Research on Chemical Intermediates

, Volume 32, Issue 9, pp 795–816 | Cite as

High-selectivity hydrogenation of cinnamaldehyde over platinum supported on aluminosilicates

  • Jan Hájek
  • Petr Kačer
  • Válav Hulínský
  • Libor Červený
  • Dmitry Yu. Murzin
Article

Abstract

This work studies liquid-phase hydrogenation of cinnamaldehyde to cinnamylalcohol over Pt/K-10 and ion-exchanged Pt/Na-Y. The experiments show the highest selectivity of 78% for Pt/K-10 and 92% for the Pt/Na-Y. By careful analysis, characterisation and changing reaction conditions it was attempted to cover key parameters possibly responsible for the high selectivity. The parameters are described and discussed in detail.

Keywords

Cinnamaldehyde hydrogenation cinnamylalcohol aluminosilicates montmorillonite K-10 LZ-Y52 Pt/Y catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Z. Bedoukian, Perfumery Synthetics and Isolates. Van Nostrand, Toronto, ON (1951).Google Scholar
  2. 2.
    L. A. Greenberg and D. Lester, Handbook of Cosmetic Materials. Interscience, New York, NY (1954).Google Scholar
  3. 3.
    H. F. Rase, Handbook of Commercial Catalysts: Heterogeneous Catalysts. CRC, Boca Raton, FL (2000).Google Scholar
  4. 4.
    R. E. Eilerman, in: Kirk-Othmer Encyclopedia of Chemical Technology, J. I. Kroschwitz and M. Howe-Grant (Eds), Vol. 6), p. 351. Wiley, New York, NY (1966).Google Scholar
  5. 5.
    K.-G. Fahlbusch, F.-J. Hammerschmidt, J. Panten, W. Pickenhagen and D. Schatkowski, in: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 14, p. 123. Wiley-VCH, Weinheim (2003).Google Scholar
  6. 6.
    W. H. Carothers and R. Adams, J. Am. Chem. Soc. 45, 1071 (1923).CrossRefGoogle Scholar
  7. 7.
    A. Budd and R. Edward, GB Patent No. 1 123 837 (1968).Google Scholar
  8. 8.
    B. Coq, A. Bittar, R. Dutartre and F. Figueras, J. Catal 128, 275 (1991).CrossRefGoogle Scholar
  9. 9.
    V. Satagopan and S. B. Chandalia, J. Chem. Technol. Biotechnol. 60, 17 (1994).CrossRefGoogle Scholar
  10. 10.
    G. Szollosi, B. Torok, L. Baranyi and M. Bartok, J. Catal. 179, 619 (1998).CrossRefGoogle Scholar
  11. 11.
    K. Liberkova, R. Touroude and D. Yu. Murzin, Chem. Eng. Sci. 57, 2519 (2002).CrossRefGoogle Scholar
  12. 12.
    P. Maki-Arvela, L.-P. M. Lindblad, K. Demirkan, N. Kumar, R. Sjoholm, T. Ollonqvist, J. Vayrynen, T. Salmi and D. Yu. Murzin, Appl. Catal. A 241, 271 (2003).CrossRefGoogle Scholar
  13. 13.
    J. P. Breen, R. Burch, J. Gomez-Lopez, K. Griffin and M. Hayes, Appl. Catal. A 268, 267 (2004).CrossRefGoogle Scholar
  14. 14.
    P. Gallezot, A. Giroir-Fendler and D. Richard, Catal. Lett. 5, 169 (1990).CrossRefGoogle Scholar
  15. 15.
    J. Hajek, N. Kumar, P. Maki-Arvela, T. Salmi and D. Yu. Murzin, J. Mol. Catal. A 217, 145 (2004).CrossRefGoogle Scholar
  16. 16.
    V. I. Parvulescu, V. Parvulescu, S. Kaliaguine, U. Endruschat, B. Tesche and H. Bonnemann, Chem. Ind. 82, 301 (2001).Google Scholar
  17. 17.
    J. Hajek, N. Kumar, P. Maki-Arvela, T. Salmi, D. Yu. Murzin, I. Paseka, T. Heikkila, E. Laine, P. Laukkanen and J. Vayrynen, Appl. Catal. A 251, 385 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Lashdaf, V. Nieminen, M. Tiitta, T. Venalainen, H. Osterholm and O. Krause, Microporous Mesoporous Mater. 75, 149 (2004).CrossRefGoogle Scholar
  19. 19.
    M. Komiyama and H. Hirai, Bull. Chem. Soc. Jpn. 56, 2833 (1983).CrossRefGoogle Scholar
  20. 20.
    P. Gallezot, in: Molecular Sieves — Science and Technology, J. Weitkamp and H. Karge (Eds), Vol. 3. Springer, Berlin (2002).Google Scholar
  21. 21.
    G. Bergeret, P. Gallezot, P. Gelin, Y. Ben Taarit, F. Lefebvre, C. Naccache and R. D. Shannon, J. Catal. 104, 279 (1987).CrossRefGoogle Scholar
  22. 22.
    G. Bergeret, P. Gallezot and B. Imelik, J. Phys. Chem. 85, 411 (1981).CrossRefGoogle Scholar
  23. 23.
    M. Che, J. F. Dutel, P. Gallezot and M. Primet, J. Phys. Chem. 80, 2371 (1976).CrossRefGoogle Scholar
  24. 24.
    H. Leinonen, PhD Thesis. University of Helsinki, Helsinki (1999).Google Scholar
  25. 25.
    V. Rakic, V. Dondur and R. Hercigonja, J. Serb. Chem. Soc. 68, 409 (2003).CrossRefGoogle Scholar
  26. 26.
    P. Gallezot, A. Alarcon Diaz, J. A. Dalmon, A. J. Renouprez and B. Imelik, J. Catal. 39, 334 (1975).CrossRefGoogle Scholar
  27. 27.
    B. Torok, G. Szollosi, K. Balazsik, K. Felfoldi, I. Kun and M. Bartok, Ultrason. Sonochem. 6, 97 (1999).CrossRefGoogle Scholar
  28. 28.
    G. Szollosi, I. Kun, A. Mastalir, M. Bartok and I. Dekany, Solid State Ionics 141, 273 (2001).CrossRefGoogle Scholar
  29. 29.
    L. D. Schmidt, The Engineering of Chemical Reactions. Oxford University Press, New York, NY (1998).Google Scholar
  30. 30.
    R. Szostak, Molecular Sieves: Principles of Synthesis and Identification. Blackie, London (1998).Google Scholar
  31. 31.
    B. Boddenberg, G. U. Rakhmatkariev, A. Wozniaka and S. Hufnagel, Phys. Chem. Chem. Phys. 6, 2494 (2004).CrossRefGoogle Scholar
  32. 32.
    J. A. Kaduk and J. Faber, Rigaku J. 12, 14 (1995.Google Scholar
  33. 33.
    W. S. Millman and G. V. Smith, in: Role of Acetal Formation in Metal Catalyzed Hydrogenation and Exchange of Cinnamaldehyde, G. V. Smith (Ed.), p. 33. Academic Press, San Diego, CA (1977).Google Scholar
  34. 34.
    J. Hajek, N. Kumar, P. Maki-Arvela, T. Salmi, D. Yu. Murzin, I. Paseka, T. Heikkila, E. Laine, P. Laukkanen and J. Vayrynen, Appl. Catal. A 251, 385 (2003).CrossRefGoogle Scholar
  35. 35.
    J. W. Ward and R. C. Hansford, J. Catal. 13 364 (1969).CrossRefGoogle Scholar
  36. 36.
    A. Bielanski and J. Datka, J. Catal. 37, 383 (1975).CrossRefGoogle Scholar
  37. 37.
    A. I. Biaglow, D. J. Parrillo and R. J. Gorte, J. Catal. 144, 193 (1993).CrossRefGoogle Scholar
  38. 38.
    B. L. Su and D. Barthomeuf, Appl. Catal. A 124, 73 (1995).CrossRefGoogle Scholar
  39. 39.
    A. W. O’Donovan, C. T. O’Connor and K. R. Koch, Microporous Mater. 5, 185 (1995).CrossRefGoogle Scholar
  40. 40.
    B. M. Choudary, N. S. Chowdari and M. L. Kantam, J. Chem. Soc. Perkin Trans. 16, 2689 (2000).CrossRefGoogle Scholar
  41. 41.
    G. Nagendrappa, Resonance 7, 64 (2002).Google Scholar
  42. 42.
    L. J. Krstic, S. Sukdolak and S. Solujic, J. Serb. Chem. Soc. 67, 325 (2002).CrossRefGoogle Scholar
  43. 43.
    J. Hajek, N. Kumar, V. Nieminen, P. Mäki-Arvela, T. Salmi, D. Yu. Murzin and L. Cerveny, Chem. Eng. J. 103, 35 (2004).CrossRefGoogle Scholar
  44. 44.
    N. Kumar, P. Maki-Arvela, J. Hajek, T. Salmi, D. Yu. Murzin, T. Heikkila, E. Laine, P. Laukkanen and J. Vayrynen, Microporous Mesoporous Mater. 69, 173 (2004).CrossRefGoogle Scholar
  45. 45.
    J. Hajek, N. Kumar, D. Francova, P. Maki-Arvela, T. Salmi, I. Paseka and D. Yu. Murzin, Chem. Eng. Technol. 27, 1290 (2004).CrossRefGoogle Scholar
  46. 46.
    E. M. Flanigen, Stud. Surface Sci. Catal. 58, 13 (1991).Google Scholar
  47. 47.
    W. M. H. Sachtler and Z. Zhang, Adv. Catal. 39, 129 (1993).CrossRefGoogle Scholar
  48. 48.
    D. G. Blackmond, R. Oukaci, B. Blanc and P. Gallezot, J. Catal. 131, 401 (1991).CrossRefGoogle Scholar
  49. 49.
    G. Li, T. Li and Y. Xu, Chem. Commun. 4, 497 (1996).CrossRefGoogle Scholar

Copyright information

© VSP 2006

Authors and Affiliations

  • Jan Hájek
    • 1
  • Petr Kačer
    • 2
  • Válav Hulínský
    • 3
  • Libor Červený
    • 2
  • Dmitry Yu. Murzin
    • 1
  1. 1.Laboratory of Industrial Chemistry, Process Chemistry CentreÅbo Akademi UniversityTurku/ÅboFinland
  2. 2.Department of Organic TechnologyInstitute of Chemical TechnologyPragueCzech Republic
  3. 3.Department of Glass and CeramicsInstitute of Chemical TechnologyPragueCzech Republic

Personalised recommendations