Research on Chemical Intermediates

, Volume 32, Issue 7, pp 683–693 | Cite as

Synthesis and characterisation of small ZnS particles

  • G. Berlier
  • F. Meneau
  • G. Sankar
  • C. R. A. Catlow
  • J. M. Thomas
  • B. Spliethoff
  • F. Schüth
  • S. Coluccia
Article

Abstract

Small ZnS particles, prepared at room temperature in an alcoholic medium using a zinc salt and thioacetamide as sulphur source, have been characterised using a suite of techniques which includes XRD, TEM and Zn K-edge EXAFS. The investigation suggests that aggregates of small sphalerite particles (cubic lattice), with average size of 3.5 nm and well-defined morphology are obtained and the particle size appears not to change with increase in the reaction time from 2 to 24 h. Zn K-edge EXAFS experiments were performed at 10 K, in order to reduce thermal disorder and the refinement of the EXAFS data resulted in very small second shell coordination numbers with respect to the bulk samples. The result is in good agreement with SEM and XRD data about the presence of nanosized particles, having a large number of surface atoms with low second shell coordination number.

Keywords

ZnS nanoparticles EXAFS TEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weller, Angew. Chem. Int. Edn. Engl. 32, 41 (1993).CrossRefGoogle Scholar
  2. 2.
    J. Rockenberger, L. Tröger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus and H. Weller, J. Phys. Chem B. 101, 2691 (1997).CrossRefGoogle Scholar
  3. 3.
    Y. Nosaka, H. Shigeno and Y. Ikeuchi, J. Phys. Chem. 99, 8317 (1995).CrossRefGoogle Scholar
  4. 4.
    W. Vogel, P. H. Borse, N. Deshmukh and S. K. Kulkarni, Langmuir 16, 2032 (2000).CrossRefGoogle Scholar
  5. 5.
    A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerward, P. J. Carroll and L. E. Brus, J. Am. Chem. Soc. 106, 6285 (1984).CrossRefGoogle Scholar
  6. 6.
    H. Hosakawa, H. Fujiwara, K. Murakoshi, Y. Wada, S. Yanagida and M. Satoh, J. Phys. Chem. 100, 6649 (1996).CrossRefGoogle Scholar
  7. 7.
    I. G. Dance, A. Choy and M. L. Scudder, J. Am. Chem. Soc. 106, 6285 (1984).CrossRefGoogle Scholar
  8. 8.
    A. Mokili, Y. Charreire, R. Cortes and D. Lincot, Thin Solid Films 288, 21 (1996).CrossRefGoogle Scholar
  9. 9.
    S. Lindross, Y. Charreire, D. Bonnin and M. Leskelä, Mater. Res. Bull. 33, 453 (1998).CrossRefGoogle Scholar
  10. 10.
    P. Calandra, A. Longo and V. Liveri, J. Phys. Chem. B 107, 25 (2003).CrossRefGoogle Scholar
  11. 11.
    F. Meneau, N. Morgante, G. Sankar, R. Winter, C. R. A. Catlow, G. N. Greaves and J. M. Thomas, Faraday Discuss. 122, 203 (2002).CrossRefGoogle Scholar
  12. 12.
    F. Meneau, S. Crystol, G. Sankar, I. P. Dolbnya, W. Bras, C. R. A. Catlow, J. M. Thomas and N. Greaves, J. Appl. Cryst. 36, 718 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Sankar, J. M. Thomas, D. Waller, J. W. Couves, C. R. A. Catlow and G. N. Greaves, J. Phys. Chem. B. 96, 7485 (1992).CrossRefGoogle Scholar
  14. 14.
    G. N. Greaves, C. Aletru, G. Sankar, C. R. A. Catlow, V. Kempson and L. Colyer, Jpn. J. Appl. Phys. 38, 202 (1999).CrossRefGoogle Scholar
  15. 15.
    F. Meneau, G. Sankar, N. Morgante, S. Cristol, C. R. A. Catlow, J. M. Thomas and G. N. Greaves, Nucl. Instrum. Methods. Phys. Res. B 199, 499 (2003).CrossRefGoogle Scholar
  16. 16.
    S. Hamad, S. Cristol and C. R. A. Catlow, J. Phys. Chem. 106, 11002 (2002).Google Scholar
  17. 17.
    A. S. Clausen, L. Gråbæk, H. Topsøe, L. B. Hansen, P. Stoltze, J. K. Nørskov and O. H. Nielsen, J. Catal. 141, 368 (1993).CrossRefGoogle Scholar
  18. 18.
    A. V. Sapelkin and S. C. Bayliss, Phys. Rev. B 65, 172104 (2002).Google Scholar
  19. 19.
    A. S. Clausen and J. K. Norskov, Top. Catal. 10, 221 (2000).CrossRefGoogle Scholar

Copyright information

© VSP 2006

Authors and Affiliations

  • G. Berlier
    • 1
    • 2
  • F. Meneau
    • 1
  • G. Sankar
    • 1
  • C. R. A. Catlow
    • 1
  • J. M. Thomas
    • 1
  • B. Spliethoff
    • 3
  • F. Schüth
    • 3
  • S. Coluccia
    • 2
  1. 1.Davy Faraday Research LaboratoryThe Royal Institution of Great BritainLondonUK
  2. 2.Department of Inorganic, Physical and Materials Chemistry, NIS Center of ExcellenceUniversity of TorinoTorinoItaly
  3. 3.Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations