Advertisement

Research on Chemical Intermediates

, Volume 32, Issue 5, pp 453–459 | Cite as

Suppression mechanism of the self-discharge reaction in nickel-metal hydride batteries using a sulfonated polyolefin separator

  • Katsuhiko ShinyamaEmail author
  • Yasuyuki Harada
  • Reizo Maeda
  • Hiroshi Nakamura
  • Shigeki Matsuta
  • Toshiyuki Nohma
  • Ikuo Yonezu
Article

Abstract

The suppression mechanism of the self-discharge reaction in nickel-metal hydride batteries using a sulfonated polyolefin separator was investigated with sealed-type AA size cells. The experimental results indicate that a sulfonated polyolefin separator effectively suppresses the self-discharge reaction in nickel-metal hydride batteries by trapping nitrogen-containing redox shuttle substances. It is also found that a sulfonated polyolefin separator traps the shuttle substances as gaseous ammonia. In the experiment examining the influence of the amount of the shuttle substances on the self-discharge, the starting point of the self-discharge agreed well with the point at which the nitrogen adsorption capacity of a sulfonated polyolefin separator reached its maximum.

Keywords

Nickel-metal hydride battery self-discharge storage characteristics sulfonated separator redox shuttle reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Bitsche and G. Gutmann, J. Power Sources 127, 8 (2004).CrossRefGoogle Scholar
  2. 2.
    I. Yonezu, in: Proceedings of the Second International Advanced Automotive Battery Conference, p. 26 (2002).Google Scholar
  3. 3.
    M. Verbrugge and E. Tate, J. Power Sources 126, 236 (2004).CrossRefGoogle Scholar
  4. 4.
    Y.-F. Yang, J. Power Sources 75, 19 (1998).CrossRefGoogle Scholar
  5. 5.
    A. Taniguchi, N. Fujioka, M. Ikoma and A. Ohta, J. Power Sources 100, 117 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Gifford, J. Adams, D. Corrigan and S. Venkatesan, J. Power Sources 80, 157 (1999).CrossRefGoogle Scholar
  7. 7.
    Y. J. Kim, A. Visintin, S. Srinivasan and A. J. Appleby, J. Electrochem. Soc. 139, 351 (1992).CrossRefGoogle Scholar
  8. 8.
    P. H. L. Notten, W. S. Kruijt and H. J. Bergveld, J. Electrochem. Soc. 145, 3774 (1998).CrossRefGoogle Scholar
  9. 9.
    P. H. L. Notten and J. R. G. van Beek, Chem, Ind. 54, 102 (2000).Google Scholar
  10. 10.
    M. Ikoma, Y. Hoshina, I. Matsumoto and C. Iwakura, J. Electrochem. Soc. 143, 1904 (1996).CrossRefGoogle Scholar
  11. 11.
    P. Leblanc, P. Blanchard and S. Senyarich, J. Electrochem. Soc. 145, 844 (1998).CrossRefGoogle Scholar
  12. 12.
    J. A. Cook and I. M. Lancaster, Electrochem. Soc. Proc. 98-15, 55 (1998).Google Scholar
  13. 13.
    C. Iwakura, N. Furukawa, T. Onishi, K. Sakamoto, S. Nohara and H. Inoue, Electrochemistry 69, 659 (2001).Google Scholar
  14. 14.
    C. Iwakura, S. Nohara, N. Furukawa and H. Inoue, Solid State Ionics 148, 487 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Iwakura, K. Ikoma, S. Nohara, N. Furukawa and H. Inoue, J. Electrochem. Soc. 150, A1623 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Oshitani, M. Yamane and S. Hattrori, J. Power Sources 8, 471 (1980).Google Scholar

Copyright information

© VSP 2006

Authors and Affiliations

  • Katsuhiko Shinyama
    • 1
    Email author
  • Yasuyuki Harada
    • 1
  • Reizo Maeda
    • 1
  • Hiroshi Nakamura
    • 1
  • Shigeki Matsuta
    • 1
  • Toshiyuki Nohma
    • 1
  • Ikuo Yonezu
    • 1
  1. 1.Mobile Energy CompanySanyo Electric Co., Ltd.HyogoJapan

Personalised recommendations