Research on Chemical Intermediates

, Volume 30, Issue 1, pp 105–120 | Cite as

Estimates of magnetic resonance parameters in semi-empirical quantum chemistry

  • N. D. Chuvylkin
  • A. M. Tokmachev
Article

Abstract

The possibility to reliably estimate the magnetic resonance parameters (MRP) can significantly increase the information content of experimentally recorded spectra. Here we consider in detail semi-empirical estimates of the ESR spectra parameters: isotropic hyperfine coupling constants, anisotropic hyperfine coupling tensors and g-tensors. The results show that the semi-empirical procedures give estimates of MRP comparable in quality with those of complicated ab initio and DFT schemes. It was underlined that a special attention should be given to geometric parameters of free radicals. The automatic procedure to determine molecular geometries of free radicals on the ground of their spectral characteristics was discussed.

ESR SPECTRA MAGNETIC RESONANCE PARAMETERS MNDO APPROXIMATION FREE RADICALS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Fischer, F. A. Neugebauer and A. Berndt, Magnetic Properties of Free Radicals, New Series II, 17-b/c. Landolt-Börnstein, Berlin (1987).Google Scholar
  2. 2.
    G. M. Zhidomirov, P. V. Schastnev and N. D. Chuvylkin, Quantum Chemical Calculations of Magnetic Resonance Parameters. Nauka, Novosibirsk (1978) (in Russian).Google Scholar
  3. 3.
    A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics. Harper and Row, New York, NY (1967).Google Scholar
  4. 4.
    A. N. Kuznetsov, Method of Spin Probes (Basis and Applications). Nauka, Moscow (1976) (in Russian).Google Scholar
  5. 5.
    Ph. Lahorte, F. de Proft, G. Vanhaelewyn, B. Masschaele, P. Cauwels, F. Callens, P. Geerlings and W. Mondelaers, J. Phys. Chem. A 103, 6650 (1999).Google Scholar
  6. 6.
    P. J. O'Malley and D. A. Ellson, Chem. Phys. Lett. 260, 492 (1996).Google Scholar
  7. 7.
    V. Barone, A. Bencini, I. Ciofini and C. Daul, J. Phys. Chem. A 103, 4275 (1999).Google Scholar
  8. 8.
    O. R. Nascimento, D. I. Moraes, R. Mercadante, R. H. A. Santons, M. Trsic and M. Tabak, Magn. Reson. Chem. 34, 743 (1996).Google Scholar
  9. 9.
    M. Knüpling, J. T. Törring and S. Un, Chem. Phys. 219, 291 (1997).Google Scholar
  10. 10.
    L. B. Knight, Jr., J. G. Kaup, B. Petzold, R. Ayyad, T. K. Ghanty and E. R. Davidson, J. Chem. Phys. 110, 5658 (1999).Google Scholar
  11. 11.
    M. Engström, O. Vahtras and H. Ågren, Chem. Phys. 243, 263 (1999).Google Scholar
  12. 12.
    V. Barone and R. Subra, J. Chem. Phys. 104, 2630 (1996).Google Scholar
  13. 13.
    G. M. Jensen, D. B. Goodin and S. W. Bunte, J. Phys. Chem. 100, 954 (1996).Google Scholar
  14. 14.
    A. M. Tokmachev, N. D. Chuvylkin, A. V. Fionov and E. V. Lunina, J. Mol. Catal. A: Chemical 172, 253 (2001).Google Scholar
  15. 15.
    D. Feller and E. R. Davidson, J. Chem. Phys. 80, 1006 (1984).Google Scholar
  16. 16.
    J. S. Shirk and G. C. Pimentel, J. Am. Chem. Soc. 90, 3349 (1968).Google Scholar
  17. 17.
    J. F. Ogilvie, J. Mol. Struct. 5, 157 (1970).Google Scholar
  18. 18.
    T. Clark, A Handbook of Computational Chemistry. Wiley, New York, NY (1985).Google Scholar
  19. 19.
    P. Bischof and G. Friedrich, J. Comp. Chem. 3, 486 (1982).Google Scholar
  20. 20.
    C. Glidewell, J. Chem. Soc., Perkin Trans. 2, 1285 (1983).Google Scholar
  21. 21.
    G. M. Zhidomirov and N. D. Chuvylkin, Theor. Chim. Acta 4, 197 (1973).Google Scholar
  22. 22.
    N. D. Chuvylkin, I. Yu. Shchapin, V. L. Klochikhin, V. A. Tikhomirov and V. I. Fel'dman, Vestn. Mosc. Univ., Ser. 2: Khim. 33, 307 (1992) (in Russian).Google Scholar
  23. 23.
    N. D. Chuvylkin and A. M. Tokmachev, Izv. Akad. Nauk, Ser. Khim. 48, 245 (1999). Engl. Transl., Russ. Chem. Bull. 48, 245 (1999).Google Scholar
  24. 24.
    N. D. Chuvylkin and A. M. Tokmachev, Izv. Akad. Nauk, Ser. Khim. 48, 1459 (1999). Engl. Transl., Russ. Chem. Bull. 48, 1442 (1999).Google Scholar
  25. 25.
    N. D. Chuvylkin and G. M. Zhidomirov, J. Magn. Reson. 11, 367 (1973).Google Scholar
  26. 26.
    N. D. Chuvylkin and A. M. Tokmachev, Izv. Akad. Nauk, Ser. Khim. 48, 2242 (1999). Engl. Transl., Russ. Chem. Bull. 48, 2216 (1999).Google Scholar
  27. 27.
    G. H. Lushington, P. Bündgen and F. Grein, Int. J. Quant. Chem. 55, 377 (1995).Google Scholar
  28. 28.
    G. H. Lushington and F. Grein, Int. J. Quant. Chem. 60, 467 (1996).Google Scholar
  29. 29.
    G. Schreckenbach and T. Ziegler, J. Phys. Chem. A 101, 3388 (1997).Google Scholar
  30. 30.
    E. van Lenthe, P. E. S. Wormer and A. van der Avoird, J. Chem. Phys. 107, 2488 (1997).Google Scholar
  31. 31.
    N. D. Chuvylkin and G. M. Zhidomirov, Mol. Phys. 25, 1233 (1973).Google Scholar
  32. 32.
    N. D. Chuvylkin and A. M. Tokmachev, Izv. Akad. Nauk, Ser. Khim. 49, 601 (2000). Engl. Transl., Russ. Chem. Bull. 49, 605 (2000).Google Scholar
  33. 33.
    B. Engels, L. A. Eriksson and S. Lunell, Adv. Quant. Chem. 27, 297 (1996).Google Scholar
  34. 34.
    R. Batra, B. Giese, M. Spichty, G. Gescheidt and K. N. Houk, J. Phys. Chem. 100, 18371 (1996).Google Scholar
  35. 35.
    M. Guerra, J. Phys. Chem. 100, 19350 (1996).Google Scholar
  36. 36.
    N. D. Chuvylkin, G. M. Zhidomirov and I. M. Umansky, Chem. Phys. Lett. 33, 576 (1975).Google Scholar
  37. 37.
    Y. Shinagawa and Y. Shinagawa, J. Am. Chem. Soc. 100, 67 (1978).Google Scholar
  38. 38.
    Y. Shinagawa, Y. Shinagawa and N. Uyesaka, Int. J. Quant. Chem. 18, 357 (1980).Google Scholar
  39. 39.
    Ph. Lahorte, F. de Proft, F. Callens, P. Geerlings and W. Mondelaers, J. Phys. Chem. A 103, 11130 (1999).Google Scholar
  40. 40.
    N. D. Chuvylkin and A. M. Tokmachev, J. Mol. Struct. (THEOCHEM) 589–590, 67 (2002).Google Scholar

Copyright information

© VSP 2004 2004

Authors and Affiliations

  • N. D. Chuvylkin
  • A. M. Tokmachev

There are no affiliations available

Personalised recommendations