Advertisement

Research on Chemical Intermediates

, Volume 29, Issue 4, pp 379–391 | Cite as

Reaction of sulphate radical anion (SO.4-) with hydroxy-and methyl-substituted pyrimidines: a pulse radiolysis study

  • T. L. Luke
  • H. Mohan
  • V. M. Manoj
  • P. Manoj
  • J. P. Mittal
  • C. T. Aravindakumar
Article

Abstract

Reactions of sulphate radical anion (SO·4-) with 4,6-dihydroxy-2-methyl pyrimidine (DHMP), 2,4-dimethyl-6-hydroxy pyrimidine (DMHP), 6-methyl uracil (MU) and 5,6-dimethyl uracil (DMU) have been studied by pulse radiolysis at pH 3 and at pH 10. The transient intermediate spectra were compared with those from the reaction of hydroxyl radical (·OH). It is proposed that SO·4- produces radical cations of these pyrimidines in the initial stage. These radical cations are short-lived except in the case of DMHP where a relatively longer lived radical cation is proposed to be formed. When there is a hydrogen atom attached to the N(1) or N(3) position, a deprotonation from these sites is highly favored. When there is no hydrogen attached to these sites, deprotonation from a substituted methyl group is favored. At acidic pH, deprotonation from nitrogen is observed for DHMP, MU and DMU. At basic pH, the radical cation reacts with OH- leading to the formation of OH adducts.

Pulse radiolysis sulphate radical anion deprotonation transient intermediate spectra. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H.-P. Schuchmann, D. J. Deeble, G. Olbrich and C. von Sonntag, Int. J. Radiat. Biol. 51, 441 (1987).Google Scholar
  2. 2.
    C. von Sonntag, The Chemical Basis of Radiation Biology. Taylor and Francis, London (1987).Google Scholar
  3. 3.
    M. D. Sevilla, J. Phys. Chem. 75, 626 (1971).Google Scholar
  4. 4.
    M. D. Sevilla, C. van Paemel and C. Nichols, J. Phys. Chem. 76, 3571 (1972).Google Scholar
  5. 5.
    M. D. Sevilla and M. L. Engelhardt, Faraday Discuss. Chem. Soc. 63, 255 (1978).Google Scholar
  6. 6.
    M. D. Sevilla, J. B. D'Arcy, K. M. Morehouse and M. L. Engelhardt, Photochem. Photobiol. 29, 37 (1979).Google Scholar
  7. 7.
    L. B. Rubin, T. N. Manshonkova, N. A. Simukova and E. I. Budowsky, Photochem. Photobiol. 34, 339 (1981).Google Scholar
  8. 8.
    H. Gorner, Photochem. Photobiol. 52, 935 (1990).Google Scholar
  9. 9.
    J. Cadet, C. Decarroz, S. Y. Wang and W. R. Midden, Isr. J. Chem. 23, 420 (1983).Google Scholar
  10. 10.
    G. J. Fisher and E. J. L. Smith, Photochem. Photobiol. 37, 27 (1983).Google Scholar
  11. 11.
    J. R. Wagner, J. Cadet and G. J. Fisher, Photochem. Photobiol. 40, 589 (1984).Google Scholar
  12. 12.
    C. Decarroz, J. R. Wagner and J. Cadet, Free Radic. Res. Commun. 2, 295 (1987).Google Scholar
  13. 13.
    C. Decarroz, J. R. Wagner, J. E. Van Lier, C. M. Krishna, P. Reizs and J. Cadet, Int. J. Radiat. Biol. 50, 491 (1986).Google Scholar
  14. 14.
    J. Cadet, M. Berger, C. Decarroz, J. R. Wagner, J. E. Van Lier, Y. M. Ginot and P. Vigny, Biochemie 68, 813 (1986).Google Scholar
  15. 15.
    M. G. Simic and S. V. Jovanovic, in: Mechanical DNA Damage and Repair, M. G. Simic, L. Grossman and A. D. Upton (Eds), pp. 39-50. Plenum, New York, NY (1986).Google Scholar
  16. 16.
    L. P. Candeias and S. Steenken, J. Am. Chem. Soc. 111, 1094 (1989).Google Scholar
  17. 17.
    R. L. Wilson, P. Wardman and K. D. Asmus, Nature 252, 323 (1974).Google Scholar
  18. 18.
    K. D. Asmus, D. J. Deeble, A. Garner, K. M. Idriss Ali and G. Scholes, Br. J. Cancer (Suppl. III) 37, 46 (1978).Google Scholar
  19. 19.
    S. V. Jovanovic and M. G. Simic, J. Phys. Chem. 90, 974 (1986).Google Scholar
  20. 20.
    K. M. Bansal and R. W. Fessendon, Radiat. Res. 75, 497 (1978).Google Scholar
  21. 21.
    H. M. Novais and S. Steenken, J. Phys. Chem. 91, 426 (1987).Google Scholar
  22. 22.
    S. N. Rustgi and P. Riesz, Int. J. Radiat. Biol. 34, 301 (1978).Google Scholar
  23. 23.
    M. D. Sevilla, D. Suryanarayana and K. M. Morehouse, J. Phys. Chem. 85, 1027 (1981).Google Scholar
  24. 24.
    H. Riederer and J. Huttermann, J. Phys. Chem. 86, 3454 (1982).Google Scholar
  25. 25.
    H.-P. Schuchmann, D. J. Deeble, G. Olbrich and C. von Sonntag, Int. J. Radiat. Biol. 51, 441 (1987).Google Scholar
  26. 26.
    A. J. S. C. Vieira and S. Steenken, J. Am. Chem. Soc. 109, 7441 (1987).Google Scholar
  27. 27.
    A. J. S. C. Vieira and S. Steenken, J. Phys. Chem. 91, 4138 (1987b).Google Scholar
  28. 28.
    S. Fujita and Y. Nagata, Radiat. Res. 114, 207 (1987).Google Scholar
  29. 29.
    P. O'Neill and S. E. Davies, Int. J. Radiat. Biol. 52, 577 (1987).Google Scholar
  30. 30.
    G. Behrens, K. Hildenbrand, D. Schulte-Frohlinde and J. N. Herak, J. Chem. Soc., Perkin Trans. 2, 305 (1988).Google Scholar
  31. 31.
    S. Fujita, Y. Nagata and T. Dohmaru, Int. J. Radiat. Biol. 54, 417 (1988).Google Scholar
  32. 32.
    K. Hildenbrand, G. Behrens, D. Schulte-Frohlinde and J. N. Herak, J. Chem. Soc., Perkin Trans. 2, 283 (1989).Google Scholar
  33. 33.
    D. Schulte-Frohlindeand K. Hildenbrand, in: Free Radicals in Synthesis and Biology, F. Minisci (Ed.), p. 335. Kluwer, Dordrecht (1989).Google Scholar
  34. 34.
    C. von Sonntag, R. Rashid, H.-P. Schuchmann and F. Mark, Free Radical Res. Commun. 6, 112 (1989).Google Scholar
  35. 35.
    K. Hildenbrand, Z. Naturforsch. 45c, 47 (1990).Google Scholar
  36. 36.
    D. J. Deeble, M. N. Schuchmann, S. Steenken and C. von Sonntag, J. Phys. Chem. 94, 8186 (1990).Google Scholar
  37. 37.
    E. Bothe, D. J. Deeble, D. G. E. Lemaire, R. Rashid, M. N. Schuchmann, H.-P. Schuchmann, D. Schulte-Frohlinde, S. Steenken and C. von Sonntag, Radiat. Phys. Chem. 36, 149 (1990).Google Scholar
  38. 38.
    R. Rashid, F. Mark, H.-P. Schuchmann and C. von Sonntag, Int. J. Radiat. Biol. 59, 1081 (1991).Google Scholar
  39. 39.
    E. Hayon, A. Treinin and J. Wilf, J. Am. Chem. Soc. 94, 47 (1972).Google Scholar
  40. 40.
    W. Roebre, M. Renz and A. Henglein, Int. J. Radiat. Phys. Chem. 1, 39 (1969).Google Scholar
  41. 41.
    M. A. Sheikhly and C. von Sonntag, Z. Naturforsch. 38b, 1622 (1983).Google Scholar
  42. 42.
    N. Guha, P. N. Moorthy, K. Kishore, D. B. Naik and K. N. Rao, Proc. Ind. Acad. Sci. (Chem. Sci.) 99, 261 (1987).Google Scholar
  43. 43.
    T. L. Luke, T. A. Jacob, H. Mohan, H. Destaillats, V. M. Manoj, P. Manoj, J. P. Mittal, M. R. Hoffmann and C. T. Aravindakumar, J. Phys. Chem. A 106, 2497 (2002).Google Scholar
  44. 44.
    T. L. Luke, H. Mohan, V. M. Manoj, P. Manoj, C. T. Aravindakumar and J. P. Mittal, Res. Chem. Intermed. 28, 303 (2002).Google Scholar
  45. 45.
    C. T. Aravindakumar, M. N. Schuchmann, B. S. M. Rao, J. von Sonntag and C. von Sonntag, Org. Biomol. Chem. 1, 401 (2003).Google Scholar

Copyright information

© VSP 2003 2003

Authors and Affiliations

  • T. L. Luke
  • H. Mohan
  • V. M. Manoj
  • P. Manoj
  • J. P. Mittal
  • C. T. Aravindakumar

There are no affiliations available

Personalised recommendations