Research on Chemical Intermediates

, Volume 29, Issue 5, pp 449–465 | Cite as

An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces

  • A. L. Attwood
  • D. M. Murphy
  • J. L. Edwards
  • T. A. Egerton
  • R. W. Harrison


The formation of a series of oxygen-centred radicals on different TiO2 samples (P25 and two different rutile materials) under various conditions was investigated using X-band c.w. Electron Paramagnetic Resonance (EPR) spectroscopy. The radicals were formed either on thermally-reduced TiO2, or by UV irradiation of the oxide under an oxygen atmosphere. The nature and stability of the radicals was also explored as a function of surface hydration. On thermally reduced TiO2, containing surface and bulk Ti3+ centres, oxygen adsorption at 300 K results in the preferential formation and stabilisation of O2- anions on the P25 surface, but O- and O3- anions are generated on the rutile surfaces. Superoxide anions (O-) and trapped holes (O2-) were also identified after photo-irradiation of the thoroughly dehydrated TiO2 samples under oxygen. The O- anions were only visible at low temperatures under continuous irradiation, while the O2- anions were stable for days at 300 K. By comparison, on fully hydrated surfaces, no stable oxygen centred radicals could be detected on P25, while O2- anions were easily observed on the rutile surfaces. On partially hydrated P25, the O-, O2- and HO2 anions were detected after UV irradiation at 77 K; all radicals decayed upon warming to 298 K. On partially hydrated rutile, the O- and O2- anions were detected and, unlike the case for P25, were found to be stable for days under the same conditions. The results illustrate the varied formation and stability of the oxygen centred radicals on TiO2 surfaces depending on the pretreatment conditions.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. E. Ollis and H. Al-Ekabi (Eds), Photocatalytic Puri. cation and Treatment of Water. Elsevier, Amsterdam (1993).Google Scholar
  2. 2.
    A. Fujishima, K. Hashimoto and T. Watanabe, Ti O 2 Photocatalysis; Fundamentals and Applications. BKC, Tokyo (1999).Google Scholar
  3. 3.
    M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341 (1993).Google Scholar
  4. 4.
    A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev. 95, 735 (1995).Google Scholar
  5. 5.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).Google Scholar
  6. 6.
    T. Tatsuma, S. Tachibana and A. Fujishima, J. Phys. Chem. B 105, 6987 (2001).Google Scholar
  7. 7.
    R. Nakamura and S. Sato, J. Phys. Chem. B 106, 5893 (2002).Google Scholar
  8. 8.
    S. H. Szczepankiewicz, A. J. Colussi and M. R. Hoffmann, J. Phys. Chem. B 104, 9842 (2000).Google Scholar
  9. 9.
    M. Che and A. J. Tench, Adv. Catal. 31, 77 (1982).Google Scholar
  10. 10.
    M. Che and A. J. Tench, Adv. Catal. 32, 1 (1983).Google Scholar
  11. 11.
    M. Anpo, M. Che, B. Fubini, E. Garrone, E. Giamello and M. C. Paganini, Top. Catal. 8, 189 (1999).Google Scholar
  12. 12.
    J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung, V. Augugliaro and J. Soria, Langmuir 17, 5368 (2001).Google Scholar
  13. 13.
    A. J. Maira, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee and V. Augugliaro, Appl. Catal. B 29, 327 (2001).Google Scholar
  14. 14.
    D. R. Park, B. J. Ahn, H. S. Park, H. Yamashita and M. Anpo, Kor. J. Chem. Eng. 18, 930 (2001).Google Scholar
  15. 15.
    D. R. Park, J. Zhang, K. Ikeue, H. Yamashita and M. Anpo, J. Catal. 185, 114 (1999).Google Scholar
  16. 16.
    P. Claus, A. Brückner, C. Mohr and H. Hofmeister, J. Am. Chem. Soc. 122, 11430 (2000).Google Scholar
  17. 17.
    M. Okumura, J. M. Coroando, J. Soria, M. Haruta and J. C. Conesa, J. Catal. 203, 168 (2001).Google Scholar
  18. 18.
    C. A. Jenkins and D. M. Murphy, J. Phys. Chem. B 103, 1019 (1999).Google Scholar
  19. 19.
    A. L. Attwood, J. Edwards, C. C. Rowlands and D. M. Murphy, J. Phys. Chem. B 107, 1779 (2003).Google Scholar
  20. 20.
    H. Einaga, A. Ogata, S. Futamura and T. Ibusuki, Chem. Phys. Lett. 338, 303 (2001).Google Scholar
  21. 21.
    H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura and Y. Iwasawa, J. Catal. 185, 252 (1999).Google Scholar
  22. 22.
    R. F. Howe and M. Gratzel, J. Phys. Chem. 89, 4495 (1985).Google Scholar
  23. 23.
    R. F. Howe and M. Gratzel, J. Phys. Chem. 91, 3906 (1987).Google Scholar
  24. 24.
    A. R. Gonzalez-Elipe and M. Che, J. Chim. Phys. 79, 355 (1982).Google Scholar
  25. 25.
    M. Anpo, T. Shima and Y. Kubokawa, Chem. Lett., 1799 (1985).Google Scholar
  26. 26.
    M. Chiesa, E. Giamello, M. C. Paganini, Z. Sojka and D. M. Murphy, J. Chem. Phys. 116, 4266 (2002).Google Scholar
  27. 27.
    E. Giamello and D. M. Murphy, Top. Mol. Org. Eng. 13, 147 (1995).Google Scholar
  28. 28.
    D. M. Murphy and E. Giamello, in: Electron Paramagnetic Resonance, B. C. Gilbert, M. J. Davies and D. M. Murphy (Eds), Vol. 13, p. 183. Royal Society of Chemistry, Cambridge (2002).Google Scholar
  29. 29.
    K. Ishibashi, Y. Nosaka, K. Hashimoto and A. Fujishima, J. Phys. Chem. B 102, 2117 (1998).Google Scholar
  30. 30.
    M. D. Sevilla, D. Becker and M. Yao, J. Chem. Soc., Faraday Trans. 86, 3279 (1990).Google Scholar
  31. 31.
    D. C. McCain and W. E. Palke, J. Magn. Reson. 20, 52 (1975).Google Scholar

Copyright information

© VSP 2003 2003

Authors and Affiliations

  • A. L. Attwood
  • D. M. Murphy
  • J. L. Edwards
  • T. A. Egerton
  • R. W. Harrison

There are no affiliations available

Personalised recommendations