Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions
- 749 Downloads
- 111 Citations
Abstract
For photochemical reactions in a quasi collimated beam, derivations are presented that introduce 'rate constants' based on the fluence (UV dose) received within the irradiated solution. These fluence-based 'rate constants' are shown to be fundamental and depend only on the quantum yield and the molar absorption coefficient at the irradiation wavelength. An experimental example is given, where the quantum yield for the photolysis of atrazine is determined to be 0.033. The new concepts are developed further to analyze the Figure-of-Merit Electrical Energy per Order (EEO), and it is shown that the EEO depends on the same fundamental photochemical parameters. An example of the photolysis of N-nitrosodimethylamine (NDMA) is presented, and it is shown that the EEO should decrease (increased electrical energy efficiency) as the radius of the UV reactor increases (increased path length), and should increase as the percent transmittance of the water decreases.
Keywords
Energy Efficiency Quantum Yield Photolysis Atrazine Photochemical ReactionPreview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.R. P. Schwarzenbach, P. M. Gschwend and D. M. Imboden, Environmental Organic Chemistry, Chapter 13. JohnWiley & Sons, Inc., New York (1993).Google Scholar
- 2.A. Leifer, The Kinetics of Environmental Aquatic Photochemistry. ACS Professional Reference Book (1988).Google Scholar
- 3.R. G. Zepp, Environ. Sci. Technol. 12 (3), 327-329 (1978).Google Scholar
- 4.R. G. Zepp, Experimental approaches to environmental photochemistry, in: The Handbook of Environmental Chemistry, O. Hutzinger (Ed.), Vol. 2, Part B. Springer, Berlin (1982).Google Scholar
- 5.R. G. Zepp and D. M. Cline, Environ. Sci. Technol. 11, 359-366 (1977).Google Scholar
- 6.W. R. Haag and T. Mill, Environ. Toxicol. Chem. 6, 359-369 (1987).Google Scholar
- 7.K. Nick, H. F. Schoeler, G. Mark, T. Söylemez, M. S. Akhlaq, H.-P. Schuchmann and C. von Sonntag, J. Water SRT-Aqua 41, 82-87 (1992).Google Scholar
- 8.J. R. Bolton, Terms and de. nitions in ultraviolet disinfection, in: Proceedings, Disinfection 2000: Disinfection of Wastes in the New Millennium. New Orleans, LA, Water Environment Federation, 601Wythe St., Alexandria,VA, 22314 (2000).Google Scholar
- 9.J. W. Verhoeven, Pure Appl. Chem. 68, 2223-2286 (1996) (available on the Web at http://www.unibas.ch/epa/welcome.html).Google Scholar
- 10.J. R. Bolton and R. G. Linden, J. Environ. Engng. (2002) (in press).Google Scholar
- 11.H. J. Morowitz, Science 111, 229-230 (1950).Google Scholar
- 12.D. P. Hessler, V. Gorenflo and F. H. Frimmel, Acta Hydrochim. Hydrobiol. 21, 209-214 (1993).Google Scholar
- 13.D. P. Hessler, V. Gorenflo and F. H. Frimmel, Aqua (London) 42, 8-12 (1993).Google Scholar
- 14.F. J. Beltran, G. Ovejero and B. Acedo, Wat. Res. 27, 1013-1021 (1993).Google Scholar
- 15.J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, Pure Appl. Chem. 73 (4), 627-637 (2001).Google Scholar
- 16.J. R. Bolton, Wat. Res. 34, 3315-3324 (2000).Google Scholar
- 17.L. R. Koller, in: Ultraviolet Radiation, S. S. Ballard (Ed.), 2nd edn, Chapter 6, p. 200. Wiley & Sons, Inc., New York (1965).Google Scholar
- 18.C. M. Sharpless, C. I. Chou, A. A. Mo. di and K. G. Linden, N-nitrosodimethylamine removal from drinking water by UV-treatment: a direct comparison of different UV technologies, in: Proceedings of Water Quality and Technology Conference, Nashville, TN (2001).Google Scholar