Research on Chemical Intermediates

, Volume 28, Issue 7–9, pp 761–777 | Cite as

Some spectroscopic aspects of electron transfer in ruthenium(II) polypyridyl complexes

  • John F. Endicott
  • M. D. Jamal Uddin
  • H. Bernhard Schlegel


The metal-to-ligand charge transfer (MLCT) absorption and emission properties of several ruthenium(II)-bipyridine am(m)ine complexes are compared. The Gaussian deconvolution of the spectra indicates that: (a) the emission MLCT bandwidths are smaller than the absorption bandwidths for the first components of the apparent vibronic progressions; (b) the emission bands decrease in energy and width when a polypyridyl is replaced by an am(m)ine. The observations can be interpreted in terms of a two state model and the perturbation theory-based treatment of the attenuation of the effective reorganizational energy, λr =~ λro(1- 4α2DA), where λro is the reorganizational energy corresponding to no mixing between the two electron transfer states and αDA = (HDA/EDA) is the mixing coefficient. Both the solvent and molecular contributions to λr are attenuated. The MLCT excited state lifetimes also decrease with am(m)ine substitution, and the non-radiative decay rate constant at 77 K is roughly proportional to the number of am(m)ine moieties coordinated to the ruthenium center.


Electron Transfer Ruthenium Deconvolution Bipyridine Transfer State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Balzani (Ed.), Electron Transfer in Chemistry. Wiley-VCH, Weinheim, Germany (2001).Google Scholar
  2. 2.
    R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).Google Scholar
  3. 3.
    R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).Google Scholar
  4. 4.
    N. S. Hush, Prog. Inorg. Chem. 8, 391 (1968).Google Scholar
  5. 5.
    N. S. Hush, Electrochim. Acta 13, 1005 (1968).Google Scholar
  6. 6.
    M. D. Newton and N. Sutin, Annu. Rev. Phys. Chem. 35, 437 (1984).Google Scholar
  7. 7.
    M. D. Newton, Chem. Rev. 91, 767 (1991).Google Scholar
  8. 8.
    A. B. P. Lever, Inorganic Electronic Spectroscopy. Elsevier, Amsterdam (1984).Google Scholar
  9. 9.
    A. B. P. Lever and E. Dodsworth, in: Electronic Structure and Spectroscopy of Inorganic Compounds, A. B. P. Lever and E. I. Solomon (Eds). Wiley, New York (1999).Google Scholar
  10. 10.
    C. K. Jorgensen, Orbitals in Atoms and Molecules. Academic Press, New York (1962).Google Scholar
  11. 11.
    R. D. Cannon, Electron Transfer Reactions. Butterworth, London (1980).Google Scholar
  12. 12.
    C. Creutz, Progr. Inorg. Chem. 30, 1 (1983).Google Scholar
  13. 13.
    J. F. Endicott, in: Electron Transfer in Chemistry, Vol. 1, V. Balzani (Ed.), Ch. 7, p. 238. Wiley-VCH, New York, NY (2001).Google Scholar
  14. 14.
    J. F. Endicott and M. J. Uddin, Coord. Chem. Rev. 219-221, 687 (2001).Google Scholar
  15. 15.
    N. Sutin, Progr. Inorg. Chem. 30, 441 (1983).Google Scholar
  16. 16.
    D. E. Richardson and H. Taube, Coord. Chem. Rev. 60, 107 (1984).Google Scholar
  17. 17.
    M. D. Newton, Adv. in Chem. Phys. 106, 303 (1999).Google Scholar
  18. 18.
    R. S. Mulliken and W. B. Person, Molecular Complexes. Wiley-Interscience, New York (1967).Google Scholar
  19. 19.
    C. Creutz, M. D. Newton and N. Sutin, Photochem. Photobiol. A: Chem. 82, 47 (1994).Google Scholar
  20. 20.
    M. A. Watzky, A. V. Macatangay, R. A. Van Camp, S. E. Mazzetto, X. Song, J. F. Endicott and T. Buranda, J. Phys. Chem. 101, 8441 (1997).Google Scholar
  21. 21.
    A. V. Macatangay, X. Song and J. F. Endicott, J. Phys. Chem. 102, 7537 (1998).Google Scholar
  22. 22.
    A. V. Macatangay and J. F. Endicott, Inorg. Chem. 39, 437 (2000).Google Scholar
  23. 23.
    A. V. Macatangay, S. E. Mazzetto and J. F. Endicott, Inorg. Chem. 38, 5091 (1999).Google Scholar
  24. 24.
    J. F. Endicott, H. B. Schlegel, M. J. Uddin and D. S. Seneviratne, Coord. Chem. Rev. 229, 95 (2002).Google Scholar
  25. 25.
    D. V. Matyushov and M. D. Newton, J. Phys. Chem. A 105, 8516 (2001).Google Scholar
  26. 26.
    D. V. Matyushov and G. A. Voth, J. Phys. Chem. A 104, 6470 (2000).Google Scholar
  27. 27.
    D. S. Seneviratne, M. J. Uddin, V. Swayambunathan, H. B. Schlegel and J. F. Endicott, Inorg. Chem. 41, 1502 (2002).Google Scholar
  28. 28.
    R. A. Marcus, J. Phys. Chem. 96, 1753 (1992).Google Scholar
  29. 29.
    R. Englman and J. Jortner,Mol. Phys. 18, 145 (1970).Google Scholar
  30. 30.
    N. Kestner, J. Logan and J. Jortner, J. Phys. Chem. 64, 2148 (1974).Google Scholar
  31. 31.
    I. R. Gould, D. Noukakis, G.-J. Luis, R. H. Young, J. L. Goodman and S. Farid, Chem. Phys. 176, 439 (1993).Google Scholar
  32. 32.
    G. A. Crosby, Acc. Chem. Res. 8, 231 (1975).Google Scholar
  33. 33.
    V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem. Rev. 96, 759 (1996).Google Scholar
  34. 34.
    A. Juris, V. Balzani, P. Belser and A. von Zelewesky, Helv. Chim. Acta. 64, 2175 (1981).Google Scholar
  35. 35.
    K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes. Academic Press, New York (1992).Google Scholar
  36. 36.
    T. J. Meyer, Progr. Inorg. Chem. 30, 389 (1983).Google Scholar
  37. 37.
    H. Yersin, D. Braun, G. Hensler and E. Galhuber, in: Vibronic Processes in Inorganic Chemistry, C. D. Flint (Ed.), Kluwer, Dordrecth (1989).Google Scholar
  38. 38.
    J. T. Hupp and R. T. Williams, Acc. Chem. Res. 34, 808 (2001).Google Scholar
  39. 39.
    A. M. Zwickel and C. Creutz, Inorg. Chem. 10, 2395 (1971).Google Scholar
  40. 40.
    W. L. Parker and G. A. Crosby, Intern. J. Quantum Chem. 39, 299 (1991).Google Scholar
  41. 41.
    J. H. Streiff, W. D. Edwards and J. L. McHale, Chem. Phys. Lett. 312, 369 (1999).Google Scholar
  42. 42.
    M. J. T. G. W. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowki, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez,M. Challacombe, P.M.W. Gill, B. G. Johnson,W. Chen, M.W.Wong, J. L Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA (1998).Google Scholar
  43. 43.
    A. B. P. Lever and E. I. Solomon, Inorganic Electronic Structure and Spectroscopy, E. I. Solomon and A. B. P. Lever (Eds). Wiley, New York (1999).Google Scholar
  44. 44.
    A. B. P. Lever, Inorg. Chem. 29, 1271 (1990).Google Scholar
  45. 45.
    E. M. Kober, J. M. Marshall, W. J. Dressick, B. P. Sullivan, J. V. Caspar and T. J. Meyer, Inorg. Chem. 24, 2755 (1985).Google Scholar
  46. 46.
    E. M. Kober, J. V. Casper, R. S. Lumpkin and T. J. Meyer, J. Phys. Chem. 90, 3722 (1986).Google Scholar
  47. 47.
    R. de la Rosa, P. J. Chang, F. Salaymeth and J. C. Curtis, Inorg. Chem. 31, 4229 (1985).Google Scholar
  48. 48.
    C. Creutz and M. H. Chou, Inorg. Chem. 26, 2995 (1987).Google Scholar
  49. 49.
    A. B. P. Lever and S. I. Gorelsky, Coord. Chem. Rev. 208, 153 (2000).Google Scholar
  50. 50.
    A. B. P. Lever, private communication (2001).Google Scholar
  51. 51.
    V. Swayambunathan and J. F. Endicott, work in progress.Google Scholar
  52. 52.
    A. Juris, F. Barigelletti, S. Campagna, V. Balzani, P. Belser and A. von Zelwesky, Coord. Chem. Rev. 84, 85 (1988).Google Scholar
  53. 53.
    R. D. Cannon, Adv. Inorg. Chem. Radiochem. 21, 179 (1979).Google Scholar
  54. 54.
    J. F. Endicott, P. G. McNamara, T. Buranda and A. V. Macatangay, Coord. Chem. Rev. 208, 61 (2000).Google Scholar
  55. 55.
    X. Song and J. F. Endicott, Chem. Phys. Lett. 204, 400 (1993).Google Scholar
  56. 56.
    C. D. Borsarelli and S. E. Bratalovsky, J. Phys. Chem. 102, 6231 (1998).Google Scholar
  57. 57.
    R. A. Marcus, J. Phys. Chem. 94, 4963 (1990).Google Scholar
  58. 58.
    T. C. Brunold and H. U. Gudel, in: Inorganic Electronic Structure and Spectroscopy, Vol. 1, E. I. Solomon and A. B. P. Lever (Eds), Ch. 5, p. 259. Wiley-Interscience, New York (1999).Google Scholar
  59. 59.
    R. Crutchley, Adv. Inorg. Chem. 41, 273 (1994).Google Scholar
  60. 60.
    J. C. Curtis and T. J. Meyer, Inorg. Chem. 21, 1562 (1982).Google Scholar
  61. 61.
    J. C. Curtis, B. P. Sullivan and T. J. Meyer, Inorg. Chem. 22, 224 (1983).Google Scholar
  62. 62.
    D. Graff, J. P. Claude and T. J. Meyer, in: Electron Transfer in Organometallic and Biochemistry, S. S. Isied (Ed.), p. 183. A.C.S. Advances in Chemistry Series No. 253, American Chemical Society, Washington, DC (1997).Google Scholar
  63. 63.
    G. Malouf and P. C. Ford, J. Am. Chem. Soc. 96, 601 (1974).Google Scholar
  64. 64.
    G. Malouf and P. C. Ford, J. Am. Chem. Soc. 99, 7213 (1977).Google Scholar
  65. 65.
    P. C. Ford, in: Inorganic and Organometallic Photochemistry, M. S. Wrighton (Ed.), p. 73. A.C.S. Advances in Chemistry Series No. 168, Washington, DC (1978).Google Scholar
  66. 66.
    J. Sykora and J. Sima, Coord. Chem. Rev. 107, 1 (1990).Google Scholar

Copyright information

© VSP 2002 2002

Authors and Affiliations

  • John F. Endicott
  • M. D. Jamal Uddin
  • H. Bernhard Schlegel

There are no affiliations available

Personalised recommendations