Advertisement

Research on Chemical Intermediates

, Volume 28, Issue 4, pp 291–301 | Cite as

Infrared spectroscopy study of adsorption and coadsorption of carbon monoxide and hydrogen on Ru/Al203

  • Silvia Zh. Todorova
  • Georgi B. Kadinov
Article

Abstract

IR spectroscopy was used to study CO adsorption and coadsorption with H2 on 5% Ru/Al2O3. By variation of sample pretreatment, CO pressures, contact time and temperature several surface species were identified: mono– and multicarbonyl species formed with ruthenium in different oxidation state and on various sites of the catalyst surface. During CO and H2 coadsorption and interaction, a new band at 2030 cm–1 was registered. It was assigned to a 'hydrocarbonyl' species on the metal particles. Thermal stability of some CO species was studied. Most stable and least reactive species was found to be a multicarbonyl giving rise to bands at 1980 and 2060 cm–1.

CO ADSORPTION CO HYDROGENATION RUTHENIUM CATALYSTS IR SPECTROSCOPY HYDROCARBONYL SPECIES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. A. Dalla Betta, A. G. Piken and M. Shelef, J. Catal. 40, 173 (1975).Google Scholar
  2. 2.
    M. A. Vannice, J. Catal. 37, 449 (1975).Google Scholar
  3. 3.
    G. Brodén, T. N. Rhodin, C. Brucker, R. Benbow and Z. Hurych, Surf. Sci. 59, 593 (1976).Google Scholar
  4. 4.
    R. A. Dalla Betta, J. Phys. Chem. 79, 2519 (1975).Google Scholar
  5. 5.
    H. M. Miura, M. L. McLaughlin and R. D. Gonzalez, J. Catal. 79, 227 (1983).Google Scholar
  6. 6.
    R. A. Dalla Betta and M. Shelef, J. Catal. 48, 111 (1977).Google Scholar
  7. 7.
    T. Mori, A. Miyamoto, H. Niizuma, N. Takahashi, T. Hattori and Y. Murakami, J. Phys. Chem. 90, 109 (1986).Google Scholar
  8. 8.
    J. T. Kiss and R. D. Gonzalez, J. Phys. Chem. 88, 892 (1984).Google Scholar
  9. 9.
    J. Y. Shen, A. Sayari and S. Kaliaguine, Res. Chem. Intermed. 19, 407 (1993).Google Scholar
  10. 10.
    E. Guglielminotti, F. Boccuzzi, G. Ghiotti and A. Chiorino, Surf. Sci. 189/ 190, 331 (1987).Google Scholar
  11. 11.
    T. Mizushima, K. Tohji, Y. Udagawa and A. Ueno, J. Amer. Chem. Soc. 112, 7887 (1990).Google Scholar
  12. 12.
    E. Guglielminotti, Langmuir 2, 812 (1986).Google Scholar
  13. 13.
    H. Knözinger, Y. Zhao, B. Tesche, R. Barth, R. Epstein, B. C. Gates and J. P. Scott, Faraday Disc. Chem. Soc. 72, 53 (1981).Google Scholar
  14. 14.
    V. L. Kuznetsov, A. T. Bell and Y. I. Yermakov, J. Catal. 65, 374 (1980).Google Scholar
  15. 15. (a)
    A. Zecchina, E. Guglielminotti, A. Bossi and M. Camia, J. Catal. 74, 225 (1982)Google Scholar
  16. 15. (b)
    A. Zecchina, E. Guglielminotti, A. Bossi and M. Camia, J. Catal. 74, 240 (1982)Google Scholar
  17. 15. (c)
    E. Guglielminotti, A. Zecchina, A. Bossi and M. Camia, J. Catal. 74, 252 (1982).Google Scholar
  18. 16.
    K. Hadjiivanov, J.-C. Lavalley, J. Lamotte, F. Mauge, J. Saint-Just and M. Che, J. Catal. 176, 415 (1998).Google Scholar
  19. 17.
    G. H. Yokomizo, C. Louis and A. T. Bell, J. Catal. 120, 1 (1989).Google Scholar
  20. 18.
    A. A. Davydov and A. T. Bell, J. Catal. 49, 332 (1977).Google Scholar
  21. 19.
    C. S. Kellner and A. T. Bell, J. Catal. 75, 251 (1982).Google Scholar
  22. 20.
    F. Solymosi and J. Raskó, J. Catal. 115, 107 (1989).Google Scholar
  23. 21.
    J. L. Robbins, J. Catal. 115, 120 (1989).Google Scholar
  24. 22.
    G.-D. Lei and L. Revan, J. Phys. Chem. 95, 4509 (1991).Google Scholar
  25. 23.
    J. Schwank, G. Parravano and H. L. Gruber, J. Catal. 61, 19 (1980).Google Scholar
  26. 24.
    M. F. Brown and R. D. Gonzalez, J. Phys. Chem. 80, 1731 (1976).Google Scholar
  27. 25.
    S.-I. Pien and S. S. C. Chuang, J. Molec. Catal. 68, 313 (1991).Google Scholar
  28. 26.
    J. G. Ekerdt and A. T. Bell, J. Catal. 58, 170 (1979).Google Scholar
  29. 27.
    C. S. Kellner and A. T. Bell, J. Catal. 71, 296 (1981).Google Scholar
  30. 28.
    N. M. Gupta, V. S. Kamble, R. M. Iyer, K. R. Thampi and M. Grätzel, J. Catal. 137, 473 (1992).Google Scholar
  31. 29.
    A. Palazov, G. Kadinov, Ch. Bonev and D. Shopov, Surf. Sci. 188, 505 (1987).Google Scholar
  32. 30.
    G. Kadinov, Ch. Bonev, S. Todorova and A. Palazov, J. Chem. Soc. Faraday Trans. 94, 3027 (1998).Google Scholar
  33. 31.
    H.-W. Chen, Z. Zhong and J. M. White, J. Catal. 90, 119 (1984).Google Scholar
  34. 32.
    G. Kadinov and A. Palazov, in: Heterogeneous Catalysis: Proc. 7th Intern. Symp., Bourgas, 1991, L. Petrov, A. Andreev and G. Kadinov (Eds), Part 1, p. 125. Inst. Catal. Bulg. Acad. Sci., Vratza (1991).Google Scholar
  35. 33.
    F. Solymosi, A. Erdöhelyi and M. Kocsis, J. Catal. 65, 428 (1980).Google Scholar
  36. 34.
    N. M. Gupta, V. S. Kamble, V. B. Kartha, R. M. Iyer, K. R. Thampi and M. Grätzel, J. Catal. 146, 173 (1994).Google Scholar
  37. 35.
    M. J. Heal, E. C. Leisegang and R. G. Torrington, J. Catal. 51, 314 (1978).Google Scholar
  38. 36.
    M. L. McKee, C. H. Dai and S. D. Worley, J. Phys. Chem. 92, 1056 (1988).Google Scholar
  39. 37.
    G. Kadinov, A. Palazov and D. Shopov, in: Heterogeneous Catalysis: Proc. 4 Int. Symp., Varna, 1979, D. Shopov, A. Andreev, A. Palazov and L. Petrov (Eds), Part 1, p. 325. Publishing House of the Bulgarian Academy of Sciences, Sofia (1979) (in Russian).Google Scholar
  40. 38.
    T. Mori, A. Miyamoto, H. Niizuma, N. Takahashi, T. Hattori and Y. Murakami, J. Phys. Chem. 90, 109 (1986).Google Scholar

Copyright information

© VSP 2002 2002

Authors and Affiliations

  • Silvia Zh. Todorova
  • Georgi B. Kadinov

There are no affiliations available

Personalised recommendations