Research on Chemical Intermediates

, Volume 26, Issue 7–8, pp 739–745 | Cite as

Molecular orbital and DFT studies of the alimemazine radical cation

  • Ke-Sheng Song
  • Lei Liu
  • Chen -Rui Hou
  • Xiao -Song Li
  • Qing -Xiang Guo


Semiempirical molecular orbital methods including CNDO, MNDO, AM1 and PM3, and density function theory method B3LYP/3-21G(d) were employed in the study of the alimemazine radical cation. It was found that PM3 was much better than CNDO, MNDO and AM1 in the structural optimization. The bond lengths and bond angles by PM3 were close to the experimental data, and comparable with the results by the density function theory method.


Bond Angle Radical Cation Phenothiazine Density Function Theory Phenothiazine Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Gooley, H. Keyzerr, and F. Setchell, Nature, 223, 80 (1969).CrossRefGoogle Scholar
  2. 2.
    W.J. Albery, A.W. Foulds, K.J. Hall, A.R. Hillman, R.G. Edgell, and A.F. Orchard, Nature, 282, 793 (1979).CrossRefGoogle Scholar
  3. 3.
    P. Mitchell, Austral. New Zealand J. Psych., 27, 370 (1993).CrossRefGoogle Scholar
  4. 4.
    I.I. Abu-Abdoun and A. Ledwith, Eur. Polym. J. 33, 1671 (1997).CrossRefGoogle Scholar
  5. 5.
    T. Yamamura, K. Suzuki, T. Yamaguchi, and T. Nishiyama, Bull. Chem. Soc. Jpn. 70, 413 (1997).CrossRefGoogle Scholar
  6. 6.
    N.J. Turro, I.V. Khudyakov, H. Van Willigen, J. Am. Chem. Soc. 117, 12273 (1995).CrossRefGoogle Scholar
  7. 7.
    E. Bosch, and J.K. Kochi, J. Chem. Soc. Perkin Trans. 1, 1057 (1995).CrossRefGoogle Scholar
  8. 8.
    S. Nath, H. Pal, D.K. Palit, A.V. Sapre, and J.P. Mittal, J. Phys. Chem. A 102, 5822 (1998).CrossRefGoogle Scholar
  9. 9.
    H.-M. Zhang, W.-Q. Ruan, Q.-X. Guo, and Y.-C. Liu, Res. Chem. Intermed. 24, 687 (1998).CrossRefGoogle Scholar
  10. 10.
    H.-M. Zhang, X.-Q. Ruan, Q.-X. Guo, and Y.-C. Liu, Chem. Lett. 449 (1998).Google Scholar
  11. 11.
    D. Clake, B.C. Gilbert, P. Hanson, and C.M. Kirk, J. Chem. Soc. Perkin Trans. 2, 1103 (1978).Google Scholar
  12. 12.
    X-Q. Zheng, X-Q. Ruan, W. Wang, H-M. Zhang, Q-X, Guo, and Y-C. Liu, Bull. Chem. Soc. Jpn. 72, 253 (1999).CrossRefGoogle Scholar
  13. 13.
    M. del C. Apreda, F.H. Cano, C. Foces-Foces, F. Lopez-Ruperez, J.C. Coesa, and J. Soria, J. Chem. Soc. Perkin Trans. 2, 575 (1987).Google Scholar
  14. 14.
    Y.-C. Liu, Y.-B. Ding, and Z.-L. Liu, J. Struct. Chem. (Jiegou Huaxue), 8, 140 (1989).Google Scholar
  15. 15.
    Y.-C. Liu, Y.-B. Ding, and Z.-L. Liu, Acta Chem. Sin. 48, 1199 (1990).Google Scholar
  16. 16.
    X.-S. Gao, J.-K. Feng, and Q. Jia, Y.-C. Liu, and J.-Z. Sun, Acta Chem. Sin. 54, 1159 (1996).Google Scholar
  17. 17.
    J.-K. Feng, X.-S. Gao, Q. Jia, Y.-C. Liu, and C.-C. Sun, Chem. J. Chin. Univ. 17, 925 (1996).Google Scholar
  18. 18.
    Gaussian 98, Revision A. 7, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.Google Scholar
  19. 19.
    D.B. Boyd, J. Mol. Struct. (THEOCHEM), 401, 219 (1997).CrossRefGoogle Scholar
  20. 20.
    J.N. Murrell, J. Mol. Struct. (THEOCHEM), 424, 93 (1998).CrossRefGoogle Scholar
  21. 21.
    M. Knupling, J.T. Torring, and S. Un, Chem. Phys. 219, 291 (1997).CrossRefGoogle Scholar
  22. 22.
    E. Orti, R. Viruela, and P.M. Viruela, J. Phys. Chem. 100, 6138 (1996).CrossRefGoogle Scholar
  23. 23.
    L. Liu, X.-S. Li, T.-W. Mu, Q.-X. Guo, and Y.-C. Liu, Res. Chem. Intermed. 26, 375 (2000).CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • Ke-Sheng Song
    • 1
    • 2
  • Lei Liu
    • 1
    • 2
  • Chen -Rui Hou
    • 1
    • 2
  • Xiao -Song Li
    • 1
    • 2
  • Qing -Xiang Guo
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiP. R. China
  2. 2.National Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouP. R. China

Personalised recommendations