Advertisement

Research on Chemical Intermediates

, Volume 26, Issue 2, pp 193–199 | Cite as

Comparison of catalytic activity and efficiency of hydrogen peroxide utilization for di-iron-containing silicotungstate with those for iron containing complexes and the oxidation of methane and ethane

  • N. Mizuno
  • M. Misono
  • Y. Nishiyama
  • Y. Seki
  • I. Kiyoto
  • C. Nozaki
Article

Abstract

The Keggin-type di-iron-substituted γ-SiW10{Fe(OH2)}2O38 6- showed high efficiency of hydrogen peroxide utilization for the oxidation of cyclohexane. The efficiency and catalytic activity greatly depended on the structures of the iron centers. Such a structure dependency of the catalysis is significant and the remarkable catalytic performance of di-iron-substituted polyoxometalate may be related to the catalysis by methane monooxygenase. Not only cyclohexane but also cyclooctane, n-hexane, n-pentane, and adamantane were catalytically oxygenated with high efficiency of hydrogen peroxide utilization. Even methane and ethane were oxidized. It was also demonstrated that the potassium salt of γ-SiW10{Fe(OH2)}2O38 6- oxidized methane in water.

Keywords

Cyclohexane Catalytic Oxidation Potassium Salt Adamantane Cyclooctane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Valentine and S.J. Lippard, J. Chem. Soc., Dalton Trans., 3925 (1997).Google Scholar
  2. 2.
    L. Que, Jr. and R.Y.N. Ho, Chem. Rev., 96, 2607 (1996).CrossRefGoogle Scholar
  3. 3.
    R.H. Holm, P. Kennepohl, and E.I. Solomon, Chem. Rev., 96, 2239 (1996).CrossRefGoogle Scholar
  4. 4.
    R.A. Leising, J. Kim, M.A. Perez, and L. Que, Jr., J. Am. Chem. Soc., 115, 9524 (1993).CrossRefGoogle Scholar
  5. 5.
    N. Mizuno and M. Misono, Chem. Rev., 98, 199 (1998).CrossRefGoogle Scholar
  6. 6.
    I.V. Kozhevnikov, Chem. Rev., 98, 171 (1998).CrossRefGoogle Scholar
  7. 7.
    T. Okuhara, N. Mizuno, and M. Misono, Adv. Catal., 41, 113 (1996).CrossRefGoogle Scholar
  8. 8.
    R. Neumann and M. Gara, J. Am. Chem. Soc., 116, 5509 (1994).CrossRefGoogle Scholar
  9. 9.
    X. Zhang, Q. Chen, D. C. Duncan, C.F. Campana, and C.L. Hill, Inorg. Chem., 36, 4208 (1997).CrossRefGoogle Scholar
  10. 10.
    M. Bösing, A. Nöh, I. Loose, and B. Krebs, J. Am. Chem. Soc., 120, 7252 (1998).CrossRefGoogle Scholar
  11. 11.
    N. Mizuno, C. Nozaki, I. Kiyoto, and M. Misono, J. Am. Chem. Soc., 120, 9267 (1998).CrossRefGoogle Scholar
  12. 12.
    R.A. Sheldon, Top. Current Chem., 164, 23 (1993).Google Scholar
  13. 13.
    A. Tézé, G. Hervé, and M.T. Pope, Inorg. Synth., 27, 85 (1990).CrossRefGoogle Scholar
  14. 14.
    F. Zonnevijlle, C.M. Tourné, and G.F. Tourné, Inorg. Chem., 21, 2751 (1982).CrossRefGoogle Scholar
  15. 15.
    J. Liu, F. Ortéga, P. Sethuraman, D.E. Katsoulis, C.E. Costello, and M.T. Pope, J. Chem. Soc., Dalton Trans., 1901 (1992).Google Scholar
  16. 16.
    X. Zhang, C.J. O’Connor, G.B. Jameson, and M.T. Pope, Inorg. Chem., 35, 30 (1996).CrossRefGoogle Scholar
  17. 17.
    C. Sheu, S.A. Richert, P. Cofré, B. Ross, Jr., A. Sobkowiak, D.T. Sawyer, and J.R. Kanofsky, J. Am. Chem. Soc., 112, 1936 (1990).CrossRefGoogle Scholar
  18. 18.
    D.H.R. Barton, B. Hu, D.K. Taylor, and R.V. Rojas Wahl, Tetrahedron Lett., 37, 1133 (1996).CrossRefGoogle Scholar
  19. 19.
    P. Battioni, J.P. Renaud, J.F. Bartoli, M.R. Artiles, M. Fort, and D. Mansuy, J. Am. Chem. Soc., 110, 8462 (1988).CrossRefGoogle Scholar
  20. 20.
    C.D. Toia, S. Ménage, C. Lambeaux, and M. Fontecave, J. Chem. Soc., Dalton Trans., 4479 (1996).Google Scholar
  21. 21.
    M.G. Clerici, Appl. Catal., 68, 249 (1991).CrossRefGoogle Scholar
  22. 22.
    G. Balvoine, D.H.R. Barton, J. Boivin, and A. Gref, Tetrahedron Lett., 31, 659 (1990).CrossRefGoogle Scholar
  23. 23.
    N. Mizuno, T. Hirose, M. Tateishi, and M. Iwamoto, J. Mol. Catal., 88, L125 (1994).CrossRefGoogle Scholar
  24. 24.
    S. Ménage, J.M. Vincent, C. Lambeaux, and M. Fontecave, J. Chem. Soc., Dalton Trans., 2081 (1994).Google Scholar
  25. 25.
    R.H. Fish, M.S. Konings, K.J. Oberhausen, R.H. Fong, W.M. Yu, G. Christou, J.B. Vincent, D.K. Coggin, and R.M. Buchanan, Inorg. Chem., 30, 3002 (1991).CrossRefGoogle Scholar
  26. 26.
    C. Kim, K. Chen, and L. Que, Jr., J. Am. Chem. Soc., 119, 5964 (1997).CrossRefGoogle Scholar
  27. 27.
    S. Itoh, T. Okunoi, H. Matsushima, T. Tokii, and Y. Nishida, J. Chem. Soc., Dalton Trans., 4479 (1996).Google Scholar
  28. 28.
    W. Nam and J.S. Valentine, New J. Chem., 13, 677 (1989).Google Scholar
  29. 29.
    R.H. Fish, M.S. Konings, K.J. Oberhausen, R.H. Fong, W.M. Yu, G. Christou, J.B. Vincent, D.K. Coggin, and R.M. Buchanan, Inorg. Chem., 30, 3002 (1991).CrossRefGoogle Scholar
  30. 30.
    Y. Seki, N. Mizuno, and M. Misono, Appl. Catal. A: General, 157, L47 (1997).CrossRefGoogle Scholar

Copyright information

© VSP 2000

Authors and Affiliations

  • N. Mizuno
    • 1
  • M. Misono
    • 1
  • Y. Nishiyama
    • 1
  • Y. Seki
    • 1
  • I. Kiyoto
    • 1
  • C. Nozaki
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations