Research on Chemical Intermediates

, Volume 26, Issue 1, pp 61–67 | Cite as

Shape selective oxidation by a microporous platinum-polyoxometalate

  • T. Okuhara
  • T. Yamada
  • Y. Yoshinaga


Shape selective catalytic behaviour of a platinum-promoted polyoxometalate, 0.5 wt% Pt−Cs2.1H0 9PW12O40, has been studied for complete oxidation of methane and benzene. The pore size of this catalyst determined by adsorptions of n-butane and isobutane was close to the molecular size of n-butane (0.43 nm). Ar and N2 porosimetries demonstrated that 0.5 wt% Pt−Cs2 1H0 9PW12O40 possesses unimodal distribution of pores in ultramicropore region. External surface area was estimated to be less than 3% that of the total surface area (61 m2 g−1) of the catalyst. Owing to the restricted pores, this exhibited efficient shape selectivity; methane (molecular size; 0.38 nm) was readily oxidized, while the oxidations of the larger molecule such as benzene (0.59 nm) were greatly suppressed. These results indicate that 0.5 wt% Pt−Cs2 1H0 9PW12O40 is a promising microporous catalyst.


Zeolite Selective Oxidation Isobutane Pore Size Distribution Curve Effective Pore Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Misono, Catal. Rev.-Sci. Eng., 29, 269 (1987).CrossRefGoogle Scholar
  2. 2.
    Y. Izumi, K. Urabe, and M. Onaka, Zeolites, Clay and Heteropoly Acid in Organic Reactions, Kodansha-Tokyo and VHC, Weinheim, New York, 1992.Google Scholar
  3. 3.
    T. Okuhara, N. Mizuno, and M. Misono, Advan. Catal. 41, 113 (1996).CrossRefGoogle Scholar
  4. 4.
    M.E. Davis, C. Saldarriga, C. Montes, J. Gardes and C. Crowder, Nature, 331, 698 (1998).CrossRefGoogle Scholar
  5. 5.
    R.M. Dessau, J.L. Schlenker and J.B. Higgins, Zeolites 10, 522 (1990).CrossRefGoogle Scholar
  6. 6.
    C.C. Freyhardt, M. Tsapatsis, R.F. Lobo, K.J. Balkus, Jr., and M.E. Davis, Nature 381, 295 (1996).CrossRefGoogle Scholar
  7. 7.
    J.S. Beck, J.C. Vartulli, W.J. Roth, M.E. Loenowincy, C.T. Kresge, K.D. Schmitt, C.T-W. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).CrossRefGoogle Scholar
  8. 8.
    S. Inagaki, Y. Fukushima, and K. Kuroda, J. Chem. Soc. Chem. Commun. 680 (1993).Google Scholar
  9. 9.
    T. Okuhara, T. Nishimura, and M. Misono, Chem. Lett. 155 (1995).Google Scholar
  10. 10.
    T. Okuhara, T. Nishimura, and M. Misono in J.W. Hightower, W.N. Delgass, E. Iglesia, and A.T. Bell (Eds.), Stud. Surf. Sci. Catal., 11th Inter. Congr. Catal. 40th Anniversary, Vol. 101, 1996, pp. 581.Google Scholar
  11. 11.
    Y. Yoshinaga, K. Seki, T. Nakato, and T. Okuhara, Angew. Chem. Int. Ed. Engl. 36, 2833 (1997).CrossRefGoogle Scholar
  12. 12.
    Y. Toshinaga and T. Okuhara, J. Chem. Soc. Faraday Trans. 94, 2235 (1998).CrossRefGoogle Scholar
  13. 13.
    D. Dollimore and G.R. Heal, J. Colloid Interface Sci. 33, 508 (1970).CrossRefGoogle Scholar
  14. 14.
    A. Saito and H. Foley, Microporous Mater. 3, 531 (1995).CrossRefGoogle Scholar
  15. 15.
    D.W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974.Google Scholar
  16. 16.
    T. Okuhara, T. Yamada, K. Seki, K. Johkan, T. Nakato, Microporous Mater. 21, 637 (1998).CrossRefGoogle Scholar
  17. 17.
    T. Yamada and T. Okuhara, Bull. Chem. Soc. Jpn. 71, 2727 (1998).CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • T. Okuhara
    • 1
  • T. Yamada
    • 1
  • Y. Yoshinaga
    • 1
  1. 1.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations