Advertisement

Research on Chemical Intermediates

, Volume 26, Issue 1, pp 29–43 | Cite as

Structures and chemical reactions of SO2 adsorbates studied by surface XAFS

  • T. Ohta
  • T. Yokoyama
  • S. Terada
  • A. Imanishi
  • Y. Kitajima
Article

Abstract

Adsorption and surface chemical reactions of SO2 on Ni, Cu and Pd metal surfaces are studied by using surface XAFS, as well as XPS and STM. It has turned out that SO2 lies flat on the Ni(100), Ni(110) and Ni(111) surfaces, while it stands on Pd(100) and Pd(111). By raising the temperature, surface reactions occur on these metal surfaces. Typical reactions on Ni and Cu are 3SO2 → S+2SO3, while those on Pd are 2SO2 → S+SO4. The structures of the adsorbate species are elucidated.

Keywords

Bridge Site Lower Energy Peak Photon Factory Ultraviolet Photoemission Spectroscopy High Resolution Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Solomon, R.J. Madix, W. Wurth and J. Stöhr, J. Phys. Chem. 85, 4835 (1991).Google Scholar
  2. 2.
    D.A. Outka, R.J. Madix, G.B. Fisher and C. DiMaggio, J. Am. Chem. Soc. 90, 4051 (1986).Google Scholar
  3. 3.
    M.L. Burke and R.J. Madix, Surf. Sci. 194, 223 (1988).CrossRefGoogle Scholar
  4. 4.
    K.T. Leung, X.S. Zhang and D.A. Shirley, J. Phys. Chem. 93, 6164 (1989).CrossRefGoogle Scholar
  5. 5.
    P. Zebisch, M. Weinelt and H.-P. Steinrück, Surf. Sci. 295, 295 (1993).CrossRefGoogle Scholar
  6. 6.
    J. Stöhr, NEXAFS Spectroscopy, Springer, Berlin, 1992.Google Scholar
  7. 7.
    J. Stöhr, in D.C. Koningsberger and P. Prins (Eds.), X-ray Absorption Principles Applications Techniques of EXAFS, SEXAFS and XANES, Wiley, New York, 1988.Google Scholar
  8. 8.
    T. Ohta, Physica B 208 & 209, 427 (1995).CrossRefGoogle Scholar
  9. 9.
    T. Ohta, J. Electron. Spectrosc. 92, 131 (1998).CrossRefGoogle Scholar
  10. 10.
    T. Ohta, P.M. Stefan, M. Nomura, and H. Sekiyama, Nucl. Instr. & Methods A246, 373 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Funabashi, T. Ohta, T. Yokoyama, Y. Kitajima and H. Kuroda, Rev. Sci. Instr. 60, 2505 (1989).CrossRefGoogle Scholar
  12. 12.
    T. Yokoyama, S. Terada, S. Yagi, A. Imanishi, S. Takenaka, Y. Kitajima and T. Ohta, Surf. Sci. 324, 25 (1995).CrossRefGoogle Scholar
  13. 13.
    T. Yokoyama, A. Imanishi, S. Terada, H. Namba, Y. Kitajimaa and T. Ohta, Surf. Sci. 334, 88 (1995).CrossRefGoogle Scholar
  14. 14.
    S. Terada, A. Imanishi, T. Yokoyama, Y. Kitajima and T. Ohta, Surf. Sci. 334, 88 (1995).CrossRefGoogle Scholar
  15. 15.
    S. Terada, M. Sakano, Y. Kitajima, T. Yokoyama and T. Ohta, J. Phys. IV France 7-C2, 703 (1997).Google Scholar
  16. 16.
    S. Terada, T. Yokoyama, M. Sakano, M. Kiguchi, Y. Kitajima and T. Ohta, Chem. Phys. Lett., in press.Google Scholar
  17. 17.
    P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 270 (1985).CrossRefGoogle Scholar
  18. 18.
    P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 284 (1985).CrossRefGoogle Scholar
  19. 19.
    P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 299 (1985).CrossRefGoogle Scholar
  20. 20.
    S.F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).CrossRefGoogle Scholar
  21. 21.
    M. Pangher, L. Wilde, M. Polcik and J. Haase, Surf. Sci. 372, 211 (1997).CrossRefGoogle Scholar
  22. 22.
    M. Polcik, L. Wilde and J. Haase, Phys. Rev. B57, 1868 (1998-I).Google Scholar
  23. 23.
    S. Takenaka, A. Imanishi, S. Terada, T. Yokoyama and T. Ohta, unpublished.Google Scholar
  24. 24.
    M. Polcik, L. Wilde, J. Haase, B. Brena, D. Cocco, G. Comelli, and G. Paolucci, Phys. Rev. B53, 13720 (1996-II).Google Scholar
  25. 25.
    K.R. Lawless, Reo. Prog. Phys. 37, 231 (1974).CrossRefGoogle Scholar
  26. 26.
    T. Nakahashi, S. Terada, T. Yokoyama, H. Hamamatsu, Y. Kitajima, M. Sakano, F. Matsui, and T. Ohta, Surf. Sci. 373, 1 (1997).CrossRefGoogle Scholar
  27. 27.
    T. Nakahashi, H. Hamamatsu, S. Terada, M. Sakano, F. Matsui, T. Yokoyama, Y. Kitajima and T. Ohta, J. Phys. IV France 7-C2, 679 (1997).Google Scholar
  28. 28.
    J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).CrossRefGoogle Scholar
  29. 29.
    I. Zabinsky, J.J. Rehr, A. Ankdinov, R.C. Albers and M.J. Eller, Phys. Rev. B52, 2995 (1995).Google Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • T. Ohta
    • 1
  • T. Yokoyama
    • 1
  • S. Terada
    • 1
  • A. Imanishi
    • 2
  • Y. Kitajima
    • 3
  1. 1.Department of Chemistry, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Department of Chemistry, Faculty of Engineering ScienceOsaka UniversityOsakaJapan
  3. 3.Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationIbarakiJapan

Personalised recommendations