Biological Theory

, Volume 3, Issue 4, pp 297–304 | Cite as

Pere Alberch’s Developmental Morphospaces and the Evolution of Cognition

  • Sergio Balari
  • Guillermo Lorenzo


In this article we argue for an extension of Pere Alberch’s notion of developmental morphospace into the realm of cognition and introduce the notion of cognitive phenotype as a new tool for the evolutionary and developmental study of cognitive abilities.


computational complexity evolutionary developmental biology (EvoDevo) evolution of cognition language morphological evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho AV (1968) Indexed grammars: An extension of context-free grammars. Journal of the ACM 15: 647–671.CrossRefGoogle Scholar
  2. Alberch P (1980) Ontogenesis and morphological diversification. American Zoologist 20: 653–667.Google Scholar
  3. Alberch P (1985) Problems with the interpretation of developmental sequences. Systematic Zoology 34: 46–58.CrossRefGoogle Scholar
  4. Alberch P (1989) The logic of monsters: Evidence for internal constraint in development and evolution. Geobios 12 (memoire spécial): 21–57.CrossRefGoogle Scholar
  5. Alberch P (1991) Del gen al fenotipo: sistemas dináimicos y evoluciói n morfológica. Revista Española de Paleontología (número extraordinario “El estudio de la forma orgánica y sus consecuencias en Paleontología Sistemática, Paleontología y Paleontología Evolutiva”): 13–19.Google Scholar
  6. Alberch P, Alberch J (1981) Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander, Bolitoglossa occidentalis (Amphibia: Plethodontidae). Journal of Morphology 167: 249–264.CrossRefGoogle Scholar
  7. Alberch P, Blanco MJ (1996) Evolutionary patterns in ontogenetic transformation. International Journal of Developmental Biology 40: 845–858.Google Scholar
  8. Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.Google Scholar
  9. Amundson RA (2006) EvoDevo as cognitive psychology. Biological Theory 1: 10–11.CrossRefGoogle Scholar
  10. Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Science 5: 119–126.CrossRefGoogle Scholar
  11. Balari S, Benítez Burraco A, Camps M, Longa VM, Lorenzo G, Uriagereka J (2008) ¿Homo loquens neanderthalensis? En torno a las capacidades simbólicas y lingüísticas del Neandertal. Munibe Antropologia—Arkeologia 59: 3–24.Google Scholar
  12. Balari S, Lorenzo G (2009) Computational phenotypes: Where the theory of computation meets Evo-Devo. Biolinguistics 3: 2–60.Google Scholar
  13. Barkow JH, Cosmides L, Tooby J, eds (1992) The Adapted Mind: Evolutionary Psychology and the Generation of Culture. Oxford: Oxford University Press.Google Scholar
  14. Bateson W (1894) Materials for the Study of Variation Treated with Special Regard to Discontinuity in the Origin of Species. London: Macmillan.CrossRefGoogle Scholar
  15. Benítez Burraco A (2008) FOXP2 y la biología molecular del lenguaje: Nuevas evidencias. II. Aspectos moleculares e implicaciones para la ontogenia y la filogenia del lenguaje. Revista de Neurología 46: 351–359.Google Scholar
  16. Benítez Burraco A (2009) Genes y Lenguaje: Aspectos ontogenéticos, filogenéiticos y cognitivos. Barcelona: Reverté.Google Scholar
  17. Beniítez Burraco A, Longa VM, Lorenzo G, Uriagereka J (2008) Also sprach Neanderthalis… Or did she? Biolinguistics 2: 225–232.Google Scholar
  18. Buss DM, ed (2005) The Handbook of Evolutionary Psychology. Hoboken, NJ: Wiley.Google Scholar
  19. Buss DM (2007) Evolutionary Biology: The New Science of the Mind. Boston: Allyn and Bacon.Google Scholar
  20. Camps M, Uriagereka J (2006) The Gordian knot of linguistic fossils. In: The Biolinguistic Turn: Issues on Language and Biology (Rosselló J, Martiín J, eds), 34–65. Barcelona: PPU.Google Scholar
  21. Carpenter M, Nagell K, Tomasello M, Butterworth G, Moore C (1998) Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monographs of the Society for Research in Child Development 63: 1–174.CrossRefGoogle Scholar
  22. Chomsky N (1956) Three models for the description of language. IRE Transactions on Information Theory 2: 113–124.CrossRefGoogle Scholar
  23. Chomsky N (1959) On certain formal properties of grammars. Information and Control 2: 137–167.CrossRefGoogle Scholar
  24. Chomsky N (1963) Formal properties of grammars. In: Handbook of Mathematical Psychology, Vol. 2 (Luce RD, Bush RR, Galanter E, eds), 323–418. New York: Wiley.Google Scholar
  25. Chomsky N (1980) Rules and Representations. New York: Columbia University Press.Google Scholar
  26. Cornil CA, Castelino CB, Ball GF (2008) Dopamine binds to α2-adrenergic receptors in the song control of zebra finches (Taeniopygia guttata). Journal of Chemical Neuroanatomy 35: 202–215.CrossRefGoogle Scholar
  27. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Archives of Neurology 50: 873–880.CrossRefGoogle Scholar
  28. Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Science 7: 415–423.CrossRefGoogle Scholar
  29. Darwin C (1871) The Descent of Man, and Selection in Relation to Sex. London: John Murray.Google Scholar
  30. De Renzi M, Moya A, Peretó J (1999) Obituary. Evolution, development and complexity in Pere Alberch (1954–1998). Journal of Evolutionary Biology 12: 624–626.CrossRefGoogle Scholar
  31. Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Science USA 93: 13494–13499.CrossRefGoogle Scholar
  32. Ding L, Perkel DJ (2002) Dopamine modulates excitability of spiny neurons in the avial basal ganglia. Journal of Neuroscience 22: 5210–5218.Google Scholar
  33. Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity. Cell and Tissue Research 213: 179–212.Google Scholar
  34. Ebbesson SOE (1984) Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences 7: 321–366.CrossRefGoogle Scholar
  35. Edelman GM (1987) Neural Darwinism: The Theory of Neuronal Group Selection. New York: Basic Books.Google Scholar
  36. Etxeberria A, Nuño de la Rosa L (in press) A world of opportunity within constraint: Pere Alberch’s early Evo-Devo. In Pere Alberch: The Creative Trajectory of an Evo-Devo Biologist (Rasskin-Gutman D, De Renzi M, eds). València: Universitat de València.Google Scholar
  37. Falk D, Gibson KR, eds (2001) Evolutionary Anatomy of the Primate Cerebral Cortex. Cambridge: Cambridge University Press.Google Scholar
  38. Fitch WT, Hauser MD (2004) Computational constraints on syntactic processing in a nonhuman primate. Science 303: 377–380.CrossRefGoogle Scholar
  39. Gale SD, Perkel DJ (2005) Properties of dopamine release and uptake in the songbird basal ganglia. Journal of Neurophysiology 93: 1871–1879.CrossRefGoogle Scholar
  40. Garciía-Azkonobieta T (2005) Evolucióin, desarrollo y (auto)organizacióin. Un estudio sobre los principios filosóficos de la evo-devo. Doctoral Dissertation, Universidad del Paiís Vasco, Donostia, Spain.Google Scholar
  41. Gentner TQ, Fenn KM, Margoliash D, Nusbaum H (2006) Recursive syntactic pattern learning by songbirds. Nature 440: 1204–1207.CrossRefGoogle Scholar
  42. Geoffroy Saint-Hilaire É (1818–1822) Philosophie anatomique, 2 Vols. Paris: J.-B. Baillière.Google Scholar
  43. Geoffroy Saint-Hilaire I (1832–1837) Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux, 4 Vols. Paris: J.-B. Baillière.CrossRefGoogle Scholar
  44. Gibson KR (1990) New perspectives on instincts and intelligence: Brain size and the emergence of hierarchical mental construction skills. In: “Language” and Intelligence in Monkeys and Apes (Parker ST, Gibson KR, eds), 97–128. New York: Cambridge University Press.CrossRefGoogle Scholar
  45. Gibson KR (2004) Human brain evolution: Developmental perspectives. In: Biology and Knowledge Revisited: From Neurogenesis to Psychogenesis (Parker ST, Langer J, Milbrath C, eds), 123–143. Mahwah, NJ: Erlbaum.Google Scholar
  46. Goodwin B (1994) How the Leopard Changed Its Spots: The Evolution of Complexity. London: Phoenix.Google Scholar
  47. Gould SJ (1977) Ontogeny and Phylogeny. Cambridge, MA: Belknap Press.Google Scholar
  48. Griffiths PE (2007) Evo-Devo meets the mind: Towards a developmental evolutionary psychology. In: Integrating Evolution and Development (Brandon R, Sansom R, eds), 195–226. Cambridge, MA: MIT Press.Google Scholar
  49. Griffiths PE, Stotz K (2000) How the mind grows: A developmental perspective on the biology of cognition. Synthese 122: 29–51.CrossRefGoogle Scholar
  50. Hansell MH (2000) Bird Nests and Construction Behaviour. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Hansell MH (2005) Animal Architecture. Oxford: Oxford University Press.CrossRefGoogle Scholar
  52. Hauser MD, Chomsky N, Fitch WT (2002) The faculty of language: What is it, who has it, and how did it evolve? Science 298: 1569–1579.CrossRefGoogle Scholar
  53. Hofman MA (2001) Brain evolution in hominids: Are we at the end of the road? In: Evolutionary Anatomy of the Primate Cerebral Cortex (Falk D, Gibson KR, eds), 113–127. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Hopcroft JE, Ullman JD (1979) Introduction to Automata Theory, Languages, and Computation. Reading, MA: Addison-Wesley.Google Scholar
  55. Huang YC, Hessler NA (2008) Social modulation during songbird courtship potentiates midbrain dopaminergic neurons. PloS ONE 3(10): e3281.CrossRefGoogle Scholar
  56. Joshi AK (1985) Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? In: Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives (Dowty DR, Karttunen L, Zwicky AM, eds), 206–250. Cambridge: Cambridge University Press.Google Scholar
  57. Joshi AK, Schabes Y (1997) Tree adjoining grammars. In: Handbook of Formal Languages, Vol. 3 (Rozenberg G, Salomaa A, eds), 69–126. Berlin: Springer.CrossRefGoogle Scholar
  58. Joshi AK, Vijay-Shanker K, Weir D (1991) The convergence of mildly context-sensitive grammar formalisms. In: Foundational Issues in Natural Language Processing (Sells P, Shieber S, Wasow T, eds), 31–81. Cambridge, MA: MIT Press.Google Scholar
  59. Kauffman S (1993) The Origins of Order: Self-Organization and Selection in Evolution. New York: Oxford University Press.Google Scholar
  60. Kelso JAS (1995) Dynamic Patterns: The Self-Organization of Brain and Behavior. Cambridge, MA: MIT Press.Google Scholar
  61. Klingberg T (2009) The Overflowing Brain: Information Overload and the Limits of Working Memory. Oxford: Oxford University Press.Google Scholar
  62. Langer J (2000) The heterochronic evolution of primate cognitive development. In: Biology, Brains, and Behavior: The Evolution of Human Development (Parker ST, Langer J, McKinney ML, eds), 215–235. Santa Fe, NM: School of American Research Press.Google Scholar
  63. Lewontin RC (1998) The evolution of cognition: Questions we will never answer. In: An Invitation to Cognitive Science. Vol. 4: Methods, Models, and Conceptual Issues, 2nd ed. (Scarborough D, Sternberg S, eds), 107–132. 2nd ed. Cambridge, MA: MIT Press.Google Scholar
  64. Lieberman P (2006) Toward an Evolutionary Biology of Language. Cambridge, MA: Harvard University Press.Google Scholar
  65. Lorenzo G (2006) El vacío sexual, la tautologiía natural y la promesa minimalista. Madrid: Antonio Machado.Google Scholar
  66. Marr D (1982) Vision. San Francisco: Freeman.Google Scholar
  67. Minugh-Purvis N, McNamara KJ, eds (2001) Human Evolution Through Developmental Change. Baltimore: Johns Hopkins University Press.Google Scholar
  68. O’Donnell TJ, Hauser MD, Fitch WT (2005) Using mathematical models of language experimentally. Trends in Cognitive Sciences 9: 284–289.CrossRefGoogle Scholar
  69. Okanoya K (2007) Sexual display as a syntactic vehicle: The evolution of syntax in birdsong and human language through sexual selection. In: The Transition to Language (Wray A, ed), 46–62. Oxford: Oxford University Press.Google Scholar
  70. Oller DK (2005) The natural logic of communicative possibilities: Modularity and presupposition. In: Modularity: Understanding the Development and Evolution of Natural Complex Systems (Callebaut W, Rasskin-Gutman D, eds), 409–434. Cambridge, MA: MIT Press.Google Scholar
  71. Oster GF, Alberch P (1982) Evolution and bifurcation of developmental programs. Evolution 36: 444–459.CrossRefGoogle Scholar
  72. Owen R (1848) On the Archetype and Homologies of the Vertebrate Skeleton. London: John Van Voorst.Google Scholar
  73. Parker ST, Langer J, McKinney ML, eds (2000) Biology, Brains, and Behavior: The Evolution of Human Development. Santa Fe, NM: School of American Research Press.Google Scholar
  74. Parker ST, McKinney ML (1999) Origins of Intelligence: The Evolution of Cognitive Development in Monkeys, Apes, and Humans. Baltimore: Johns Hopkins University Press.Google Scholar
  75. Perruchet P, Rey A (2005) Does the mastery of center-embedded linguistic structures distinguish humans from non-human primates? Psychonomic Bulletin and Review 12: 307–313.CrossRefGoogle Scholar
  76. Pinker S (1997) How the Mind Works. New York: Norton.Google Scholar
  77. Ploog D (2002) Is the neural basis of vocalization different in non-human primates and Homo sapiens? In: The Speciation of Homo Sapiens (Crow TJ, ed), 121–135. London: British Academy.Google Scholar
  78. Plotkin H (1997) Evolution in Mind: An Introduction to Evolutionary Psychology. London: Alan Lane.Google Scholar
  79. Pullum GK (1986) Footloose and context-free. Natural Language and Linguistic Theory 4: 409–414.CrossRefGoogle Scholar
  80. Pullum GK, Rogers J (2006) Animal pattern-learning experiments: Some mathematical background.∼gpullum/MonkeyMath.pdf.
  81. Radzinski D (1991) Chinese number-names, tree adjoining languages, and mild context-sensitivity. Computational Linguistics 17: 277–299.Google Scholar
  82. Rasskin-Gutman D (2005) Modularity: Jumping forms within morphospace. In: Modularity: Understanding the Development and Evolution of Natural Complex Systems (Callebaut W, Rasskin-Gutman D, eds), 207–219. Cambridge, MA: MIT Press.Google Scholar
  83. Reid RGB (2007) Biological Emergences: Evolution by Natural Experiment. Cambridge, MA: MIT Press.Google Scholar
  84. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. Trends in Neurosciences 7: 320–325.CrossRefGoogle Scholar
  85. Rochefort C, He X, Scotto-Lomassese S, Scharff C (2007) Recruitment of FOXP2-expressing neurons to Area X varies during song development. Developmental Neurobiology 67: 809–817.CrossRefGoogle Scholar
  86. Rogers J, Pullum GK (in press) Aural pattern recognition experiments and the subregular hierarchy. UCLA Working Papers in Linguistics—Proceedings of the Mathematics of Language 10.Google Scholar
  87. Sasaki A, Sotnikova TD, Gainetdinov RR, Jarvis ED (2006) Social context-dependent singing-regulated dopamine. Journal of Neuroscience 26: 9010–9014.CrossRefGoogle Scholar
  88. Searle JR (1985) Minds, Brains and Science. Cambridge, MA: Harvard University Press.Google Scholar
  89. Smith KK (2001) Heterochrony revisited: The evolution of developmental sequences. Biological Journal of the Linnean Society 73: 169–186.CrossRefGoogle Scholar
  90. Smith KK (2002) Sequence heterochrony and the evolution of development. Journal of Morphology 252: 82–97.CrossRefGoogle Scholar
  91. Striedter GF (2005) Principles of Brain Evolution. Sunderland, MA: Sinauer.Google Scholar
  92. Striedter GF (2006) Precis of Principles of Brain Evolution. Behavioral and Brain Sciences 29: 1–36.Google Scholar
  93. Thelen E, Smith LB (1994) A Dynamic Systems Approach to the Development of Cognition and Action. Cambridge, MA: MIT Press.Google Scholar
  94. Tettamanti M, Moro A, Messa C, Moresco RM, Rizzo G, Carpinelli A, Matarrese M, Fazio F, Perani D (2005) Basal ganglia and language: Phonology modulates dopaminergic release. Brain Imaging 16: 397–401.Google Scholar
  95. Todt D, Hultsch H (1998) How songbirds deal with large amounts of serial information: Retrieval rules suggest a hierarchical song memory. Biological Cybernetics 79: 487–500.CrossRefGoogle Scholar
  96. Tomasello M, Farrar MJ (1986) Joint attention and early language. Child Development 57: 1454–1463.CrossRefGoogle Scholar
  97. Uriagereka J (2008) Desperately evolving syntax. In: The Evolution of Language: Proceedings of the 7th International Conference (EVOLANG7) (Smith ADM, Smith K, Ferrer i Cancho R, eds), 331–337. Singapore: World Scientific.CrossRefGoogle Scholar
  98. Vijay-Shanker K, Weir D (1994) The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27: 511–546.CrossRefGoogle Scholar
  99. Wagensberg J (2004) La rebeliói n de las formas o cói mo perseverar cuando la incertidumbre aprieta. Barcelona: Tusquets.Google Scholar
  100. Weir D (1992) A geometric hierarchy beyond context-free languages. Theoretical Computer Science 104: 235–261.CrossRefGoogle Scholar
  101. Weir D (1994) Linear iterated pushdowns. Computational Intelligence 10: 431–439.CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2009

Authors and Affiliations

  1. 1.Departament de Filologia Catalana and Centre de Lingüística Teòrica, Facultat de LletresUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
  2. 2.Departamento de Filología Española, Facultad de Filología Campus El MilánUniversidad de OviedoOviedoSpain

Personalised recommendations