Abstract
In analyzing large-scale systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solution properties of the large-scale system are then deduced from the solution properties of the individual subsystems and the nature of the system interconnections. In this paper, we develop an analysis framework for discrete-time large-scale dynamical systems based on vector dissipativity notions. Specifically, using vector storage functions and vector supply rates, dissipativity properties of the discrete-time composite large-scale system are shown to be determined from the dissipativity properties of the subsystems and their interconnections. In particular, extended Kalman-Yakubovich-Popov conditions, in terms of the subsystem dynamics and interconnection constraints, characterizing vector dissipativeness via vector system storage functions are derived. Finally, these results are used to develop feedback interconnection stability results for discrete-time large-scale nonlinear dynamical systems using vector Lyapunov functions.
Article PDF
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Haddad, W.M., Hui, Q., Chellaboina, V. et al. Vector dissipativity theory for discrete-time large-scale nonlinear dynamical systems. Adv Differ Equ 2004, 612830 (2004). https://doi.org/10.1155/S1687183904310071
Received:
Published:
DOI: https://doi.org/10.1155/S1687183904310071