Abstract
Let α(t) be the limiting ratio of the generalized Fibonacci numbers produced by summing along lines of slope t through the natural arrayal of Pascal's triangle. We prove that is an even function.
Article PDF
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Fishkind, D.E. On the growth rate of generalized Fibonacci numbers. Adv Differ Equ 2004, 876467 (2004). https://doi.org/10.1155/S1687183904310034
Received:
Published:
DOI: https://doi.org/10.1155/S1687183904310034