Adaptive DOA Estimation Using a Database of PARCOR Coefficients

  • Eiji MochidaEmail author
  • Youji Iiguni
Open Access
Research Article


An adaptive direction-of-arrival (DOA) tracking method based upon a linear predictive model is developed. This method estimates the DOA by using a database that stores PARCOR coefficients as key attributes and the corresponding DOAs as non-key attributes. The Open image in new window -dimensional digital search tree is used as the data structure to allow efficient multidimensional searching. The nearest neighbour to the current PARCOR coefficient is retrieved from the database, and the corresponding DOA is regarded as the estimate. The processing speed is very fast since the DOA estimation is obtained by the multidimensional searching. Simulations are performed to show the effectiveness of the proposed method.


Information Technology Data Structure Predictive Model Quantum Information Processing Speed 


  1. 1.
    Capon J: High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 1969, 57(8):1408–1418.CrossRefGoogle Scholar
  2. 2.
    Schmidt RO: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986, 34(3):276–280. 10.1109/TAP.1986.1143830CrossRefGoogle Scholar
  3. 3.
    Rao BD, Hari KVS: Performance analysis of Root-Music. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(12):1939–1949. 10.1109/29.45540CrossRefGoogle Scholar
  4. 4.
    Roy R, Kailath T: ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(7):984–995. 10.1109/29.32276CrossRefGoogle Scholar
  5. 5.
    Johnson DH: The application of spectral estimation methods to bearing estimation problems. Proceedings of the IEEE 1982, 70(9):1018–1028.CrossRefGoogle Scholar
  6. 6.
    Andrieu C, Djurić PM, Doucet A: Model selection by MCMC computation. Signal Processing 2001, 81(1):19–37. 10.1016/S0165-1684(00)00188-2CrossRefGoogle Scholar
  7. 7.
    Andrieu C, Doucet A: Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Transactions on Signal Processing 1999, 47(10):2667–2676. 10.1109/78.790649CrossRefGoogle Scholar
  8. 8.
    Katkovnik V, Gershman AB: Performance study of the local polynomial approximation based beamforming in the presence of moving sources. IEEE Transactions on Antennas and Propagation 2002, 50(8):1151–1157. 10.1109/TAP.2002.802269CrossRefGoogle Scholar
  9. 9.
    Katkovnik V, Gershman AB: A local polynomial approximation based beamforming for source localization and tracking in nonstationary environments. IEEE Signal Processing Letters 2000, 7(1):3–5. 10.1109/97.809509CrossRefGoogle Scholar
  10. 10.
    Setiawan I, Iiguni Y, Maeda H: New approach to adaptive DOA estimation based upon a database retrieval technique. IEICE Transactions on Communications 2000, E83-B(12):2694–2701.Google Scholar
  11. 11.
    Setiawan I, Iiguni Y: DOA estimation based on the database retrieval technique with nonuniform quantization and clustering. Digital Signal Processing 2004, 14(6):590–613.CrossRefGoogle Scholar
  12. 12.
    Orenstein JA: Multidimensional tries used for associative searching. Information Processing Letters 1982, 14(4):150–157. 10.1016/0020-0190(82)90027-8CrossRefGoogle Scholar
  13. 13.
    Makhoul J: Linear prediction: a tutorial review. Proceedings of the IEEE 1975, 63(4):561–580.CrossRefGoogle Scholar
  14. 14.
    Wax M, Kailath T: Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985, 33(2):387–392. 10.1109/TASSP.1985.1164557MathSciNetCrossRefGoogle Scholar
  15. 15.
    Godara LC: Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations. Proceedings of the IEEE 1997, 85(8):1195–1245. 10.1109/5.622504CrossRefGoogle Scholar

Copyright information

© Mochida and Iiguni. 2006

Authors and Affiliations

  1. 1.Department of Systems Innovation, Graduate School of Engineering ScienceOsaka UniversityOsakaJapan

Personalised recommendations