A Bayesian Super-Resolution Approach to Demosaicing of Blurred Images

  • Miguel VegaEmail author
  • Rafael Molina
  • Aggelos K Katsaggelos
Open Access
Research Article
Part of the following topical collections:
  1. Super-Resolution Imaging: Analysis, Algorithms, and Applications


Most of the available digital color cameras use a single image sensor with a color filter array (CFA) in acquiring an image. In order to produce a visible color image, a demosaicing process must be applied, which produces undesirable artifacts. An additional problem appears when the observed color image is also blurred. This paper addresses the problem of deconvolving color images observed with a single coupled charged device (CCD) from the super-resolution point of view. Utilizing the Bayesian paradigm, an estimate of the reconstructed image and the model parameters is generated. The proposed method is tested on real images.


Reconstructed Image Quantum Information Color Image Couple Charged Device Single Image 


  1. 1.
    Bayer BE: Color imaging array. 1976.Google Scholar
  2. 2.
    Ramanath R: Interpolation methods for the Bayer color array, Ph.D. dissertation. North Carolina State University, Raleigh, NC, USA; 2000.Google Scholar
  3. 3.
    Cok DR: Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal. 1987.Google Scholar
  4. 4.
    Freeman TW: Median filter for reconstructing missing color samples. 1988.Google Scholar
  5. 5.
    Laroche CA, Prescott MA: Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients. 1994.Google Scholar
  6. 6.
    kimmel R: Demosaicing: image reconstruction from color CCD samples. IEEE Transactions Image Processing 1999, 8(9):1221–1228. 10.1109/83.784434CrossRefGoogle Scholar
  7. 7.
    Gunturk BK, Altunbasak Y, Mersereau RM: Color plane interpolation using alternating projections. IEEE Transactions Image Processing 2002, 11(9):997–1013. 10.1109/TIP.2002.801121CrossRefGoogle Scholar
  8. 8.
    Scheunders P: An orthogonal wavelet representation of multivalued images. IEEE Transactions Image Processing 2003, 12(6):718–725. 10.1109/TIP.2003.811502MathSciNetCrossRefGoogle Scholar
  9. 9.
    Alvarez LD, Molina R, Katsaggelos AK: High resolution images from a sequence of low resolution observations. In Digital Image Sequence Processing, Compression and Analysis. Edited by: Reed TR. CRC Press, Boca Raton, Fla, USA; 2004:233–259. chapter 9Google Scholar
  10. 10.
    Ng MK, Chan RH, Chan TF, Yip AM: Cosine transform preconditioners for high resolution image reconstruction. Linear Algebra and its Applications 2000, 316(1–3):89–104. 10.1016/S0024-3795(99)00274-8MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nguyen N, Milanfar P: A wavelet-based interpolation-restoration method for superresolution. Circuits, Systems, and Signal Processing 2000, 19(4):321–338. 10.1007/BF01200891CrossRefGoogle Scholar
  12. 12.
    Nguyen N, Milanfar P, Golub G: A computationally efficient superresolution image reconstruction algorithm. IEEE Transactions Image Processing 2001, 10(4):573–583. 10.1109/83.913592CrossRefGoogle Scholar
  13. 13.
    Ng MK, Yip AM: A fast MAP algorithm for high-resolution image reconstruction with multisensors. Multidimensional Systems and Signal Processing 2001, 12(2):143–164. 10.1023/A:1011136812633MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kang MG, Chaudhuri S: Super-resolution image reconstruction. IEEE Signal Processing Magzine 2003, 20(3):19–20. 10.1109/MSP.2003.1203206CrossRefGoogle Scholar
  15. 15.
    Bose NK, Chan RH, Ng MK: Special issue on high-resolution image reconstruction. I. Guest editorial. International Journal of Imaging Systems and Technology 2004, 14(2):35–35. 10.1002/ima.20005CrossRefGoogle Scholar
  16. 16.
    Choi E, Choi J, Kang MG: Super-resolution approach to overcome physical limitations of imaging sensors: an overview. International Journal of Imaging Systems and Technology 2004, 14(2):36–46. 10.1002/ima.20006MathSciNetCrossRefGoogle Scholar
  17. 17.
    Farsiu S, Robinson D, Elad M, Milanfar P: Advances and challenges in super-resolution. International Journal of Imaging Systems and Technology 2004, 14(2):47–57. 10.1002/ima.20007CrossRefGoogle Scholar
  18. 18.
    Zomet A, Peleg S: Multi-sensor super-resolution. Proceedings of 6th IEEE Workshop on Applications of Computer Vision (WACV '02), December 2002, Orlando, Fla, USA 27–31.Google Scholar
  19. 19.
    Farsiu S, Elad M, Milanfar P: Multiframe demosaicing and super-resolution from undersampled color images. Computational Imaging II, January 2004, San Jose, Calif, USA, Proceedings of SPIE 5299: 222–233.CrossRefGoogle Scholar
  20. 20.
    Gotoh T, Okutomi M: Direct super-resolution and registration using raw CFA images. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), June–July 2004, Washington, DC, USA 2: 600–607.Google Scholar
  21. 21.
    Farsiu S, Elad M, Milanfar P: Multi-frame demosaicing and super-resolution of color images. IEEE Transactions Image Processing 2006, 15(1):141–159.CrossRefGoogle Scholar
  22. 22.
    Mateos J, Molina R, Katsaggelos AK: Bayesian high resolution image reconstruction with incomplete multisensor low resolution systems. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong 3: 705–708.Google Scholar
  23. 23.
    Molina R, Vega M, Abad J, Katsaggelos AK: Parameter estimation in Bayesian high-resolution image reconstruction with multisensors. IEEE Transactions Image Processing 2003, 12(12):1655–1667. 10.1109/TIP.2003.818117CrossRefGoogle Scholar
  24. 24.
    Katsaggelos AK, Lay KT, Galatsanos NP: A general framework for frequency domain multi-channel signal processing. IEEE Transactions Image Processing 1993, 2(3):417–420. 10.1109/83.236528CrossRefGoogle Scholar
  25. 25.
    Molina R, Mateos J, Katsaggelos AK, Vega M: Bayesian multichannel image restoration using compound Gauss-Markov random fields. IEEE Transactions Image Processing 2003, 12(12):1642–1654. 10.1109/TIP.2003.818015CrossRefGoogle Scholar
  26. 26.
    Mateos J, Vega M, Molina R, Katsaggelos AK: Bayesian image estimation from an incomplete set of blurred, undersampled low resolution images. Proceedings of 1st Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA '03), June 2003, Puerto de Andratx, Mallorca, Spain, Lecture Notes in Computer Science 2652: 538–546.CrossRefGoogle Scholar
  27. 27.
    Molina R, Katsaggelos AK, Mateos J: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Transactions Image Processing 1999, 8(2):231–246. 10.1109/83.743857MathSciNetCrossRefGoogle Scholar
  28. 28.
    Commission Internationale de L'Éclairage : Colorimetry. 2nd edition. CIE, Vienna, Austria; 1986. publication CIE no. 15.2Google Scholar
  29. 29.
    International Telecommunication Union : Basic Parameter Values for the HDTV Standard for the Studio and for International Programme Exchange. ITU, Geneva, Switzerland; 1990. ITU-R Recommendation BT.709Google Scholar
  30. 30.

Copyright information

© Vega et al. 2006

Authors and Affiliations

  • Miguel Vega
    • 1
    Email author
  • Rafael Molina
    • 2
  • Aggelos K Katsaggelos
    • 3
  1. 1.Departamento de Lenguajes y Sistemas Informáticos, Escuela Técnica Superior de Ingeniería InfomáticaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Ciencias de la Computación e Inteligencia Artificial, Escuela Técnica Superior de Ingeniería InfomáticaUniversidad de GranadaGranadaSpain
  3. 3.Department of Electrical Engineering and Computer Science, Robert R. McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations