Skip to main content
Log in

Spiral wave chimeras for coupled oscillators with inertia

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp. 150, 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E. 69, 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called solitary region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Suppl. 150, 115 (2003)

    Article  ADS  Google Scholar 

  2. S.I. Shima, Y. Kuramoto, Phys. Rev. E. 69, 036213 (2004)

    Article  ADS  Google Scholar 

  3. P.-J. Kim, T.-W. Ko, H. Jeong, H.-T. Moon, Phys. Rev. E 70, 065201(R) (2004)

    Article  ADS  Google Scholar 

  4. E. Martens, C. Laing, S. Strogatz. Phys. Rev. Lett. 104, 044101 (2010)

    Article  ADS  Google Scholar 

  5. O. Omel’chenko, M. Wolfrum, S. Yanchuk, Yu. Maistrenko, O. Sudakov. Phys. Rev. E 85, 036210 (2012)

    Article  ADS  Google Scholar 

  6. S. Nkomo, A. Taylor, K. Showalter. Phys. Rev. Lett. 110, 244102 (2013)

    Article  ADS  Google Scholar 

  7. M.J. Panaggio, D.M. Abrams. Phys. Rev. Lett. 110, 094102 (2013)

    Article  ADS  Google Scholar 

  8. J. Xie, E. Knobloch, H.-C. Kao. Phys. Rev. E. 92, 042921 (2015)

    Article  ADS  Google Scholar 

  9. C.R. Laing, SIAM J. Appl. Dyn. Syst. 16, 974 (2017)

    Article  MathSciNet  Google Scholar 

  10. O. Omel’chenko, M. Wolfrum, E. Knobloch, SIAM J. Appl. Dyn. Syst. 17, 97 (2018)

    Article  MathSciNet  Google Scholar 

  11. J.F. Totz, J. Rode, M.R. Tinsley et al. Nat. Phys. 14, 282 (2018)

    Article  Google Scholar 

  12. O. Omel’chenko, E. Knobloch, New J. Phys. 21, 093034 (2019)

    Article  ADS  Google Scholar 

  13. J.F. Totz, inSynchronization and Waves in Active Media (Springer, Berlin, 2019), pp. 55–97

  14. P. Jaros, Yu. Maistrenko, T. Kapitaniak, Phys. Rev. E 91, 022907 (2015)

    Article  ADS  Google Scholar 

  15. P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, Yu. Maistrenko, Chaos 28, 011103 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Ashwin, O. Burylko, Chaos 25, 013106 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Salnikov, R. Levchenko, O. Sudakov, inProc. of the 6th IEEE International Conference (IDAACS), 2011, pp. 198–202

  18. O. Sudakov, A. Cherederchuk, V. Maistrenko, inProc. of the 9th IEEE International Conference (IDAACS), 2017, pp. 311–316

  19. D. Wiley, S. Strogatz, M. Girvan. Chaos 16, 015103 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Morris, E. Bodenschatz, D. Cannell, G. Ahlers, Physica D 97, 164 (1996)

    Article  ADS  Google Scholar 

  21. H. Sakaguchi, Yu. Kido, Progr. Theor. Phys. Suppl. 161, 332 (2006)

    Article  ADS  Google Scholar 

  22. Yu. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, New J. Phys. 17, 073037 (2015)

    Article  ADS  Google Scholar 

  23. A. Pikovsky, M. Roseblum. Phys. Rev. Lett. 101, 264103 (2008)

    Article  ADS  Google Scholar 

  24. I. Omelchenko, Yu. Maistrenko, P. Hovel, E. Scholl. Phys. Rev. Lett. 106, 234102 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Maistrenko.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maistrenko, V., Sudakov, O. & Maistrenko, Y. Spiral wave chimeras for coupled oscillators with inertia. Eur. Phys. J. Spec. Top. 229, 2327–2340 (2020). https://doi.org/10.1140/epjst/e2020-900279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900279-x

Navigation