Delay of ice formation on penguin feathers

Abstract

Cold-weather penguins continually dive in and out of the water and get splashed by waves during the frigid Antarctic winter. Yet, even under these extreme sub-zero conditions, macroscopic ice crystals are typically not observed on their feathers. In this work, we hypothesize that the origin of the anti-icing properties of a cold-weather penguin’s feathers comes from a unique combination of the feather’s macroscopic structure, the nanoscale topography of its barbules, and the hydrophobicity of its preen oil. We show that, the combination of all three, make cold-weather penguin feathers both highly water repellant and icephobic. In this paper, we present the results from a series of droplet freezing experiments performed on feathers from a number of species of both cold-weather and warm-weather penguins. Compared to a smooth glass substrate, freezing was delayed by a factor of 30-times for drops deposited on warm-weather penguin feathers and 60-times for cold-weather penguins. The difference in freezing time between warm- and cold-weather penguins was statistically significant and can be attributed to the increase in the contact angle measured between the drop and the feather of the cold-weather penguin. This increased contact angle is the result of an increase in the hydrophobicity of the preen oil and the inclusion of nanoscale, air-trapping dimples on the surface of the barbules. The physics of this delay are explained through the development of a simple heat transfer model which demonstrates that increasing contact angle is a primary cause of increased freezing time and icephobicity. The results of this study can be used to motivate the designs of biomimetic surfaces to minimize ice formation in extreme conditions for a number of important engineering applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Le Maho, P. Delclitte, J. Chatonnet, Am. J. Physiol. 231, 913 (1976)

    Article  Google Scholar 

  2. 2.

    J. Jacob, Syst. Ecol. 4, 209 (1976)

    Article  Google Scholar 

  3. 3.

    W.C. Geer, J. Aeronaut. Sci. 6, 451 (1939)

    Article  Google Scholar 

  4. 4.

    W.A. Cooper, et al., J. Aircraft 21, 708 (1984)

    Article  Google Scholar 

  5. 5.

    R.W. Gent, N.P. Dart, J.T. Cansdale, Phil. Trans. R. Soc. A 358, 2873 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    Environmental Protection Agency, Effluent limitation guidelines and new source performance standards for the airport deicing category, 77 FR 29167, pp. 29167–29205, Document No 2012-10633, 2012

  7. 7.

    W.J. Jasinski, et al., Trans. ASME J. Solar Energy Eng. 120, 60 (1998)

    Article  Google Scholar 

  8. 8.

    R. Carriveau, A. Edrisy, P. Cadieux, J. Adhes. Sci. Technol. 26, 37 (2012)

    Article  Google Scholar 

  9. 9.

    N. Dalili, A. Edrisy, R. Carriveau, Renew Sustain Energy Rev. 13, 428 (2007)

    Article  Google Scholar 

  10. 10.

    C.H.M. Machielsen, H.G.I. Kerschbaumer, Int. J. Refrig. 12, 283 (1989)

    Article  Google Scholar 

  11. 11.

    M. He, et al., Soft Matter 6, 2396 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    M. He, et al., Soft Matter 7, 3993 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    L.L. Cao, et al., Langmuir 25, 12444 (2009)

    Article  Google Scholar 

  14. 14.

    A.J. Meuler, G.H. Mckinley, R.E. Cohen, ACS Nano 4, 7048 (2010)

    Article  Google Scholar 

  15. 15.

    L. Mishchenko, et al., ACS Nano 4, 7699 (2010)

    Article  Google Scholar 

  16. 16.

    J. Lv, et al., ACS Nano 8, 3152 (2014)

    Article  Google Scholar 

  17. 17.

    D.J. McCafferty, et al., Biol. Lett. 9, 20121192 (2013)

    Article  Google Scholar 

  18. 18.

    K. Law, H. Zhao,Surface wetting: characterization, contact angle, and fundamentals (Springer, Switzerland, 2016)

  19. 19.

    D.M. Anderson, M.G. Worster, S.H. Davis, J. Cryst. Growth 163, 329 (1996)

    ADS  Article  Google Scholar 

  20. 20.

    J. Robertson, C. Harkin, J. Govan, J. Forensic Sci. Soc. 24, 85 (1984)

    Article  Google Scholar 

  21. 21.

    N. Du, et al., J. Theor. Biol. 248, 727 (2007)

    Article  Google Scholar 

  22. 22.

    E. Bormashenko, et al., J. Colloid Interface Sci. 311, 212 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    E. Bormashenko, O. Gendelman, G. Whyman, Langmuir 28, 14992 (2012)

    Article  Google Scholar 

  24. 24.

    S. Wang, et al., J. Phys. Chem. C 120, 15923 (2016)

    Article  Google Scholar 

  25. 25.

    Y.K. Kamath, C.J. Dansizer, H.D. Weigmann, Soc. Cosmetic Chemists 28, 273 (1977)

    Google Scholar 

  26. 26.

    S. Srinivasan, et al., J. R. Soc. Interface 11, 20140287 (2014)

    Article  Google Scholar 

  27. 27.

    J. Reneerkens, Functional aspects of seasonal variation in preen wax composition of sandpipers, PhD Thesis, University of Groningen, 2007

  28. 28.

    J.P. Rothstein, Annu. Rev. Fluid Mech. 42, 89 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    P.-G. de Gennes, F. Brochard-Wyart, D. Quere,Capillary and wetting phenomena: drops, bubbles, pearls, waves (Springer, New York, 2004)

  30. 30.

    K.Y. Li, et al., Langmuir 28, 10749 (2012)

    Article  Google Scholar 

  31. 31.

    S. Jung, et al., Langmuir 27, 3059 (2011)

    Article  Google Scholar 

  32. 32.

    E. Alizadeh-Birjandi, H.P. Kavehpour, J. Coat. Technol. Res. 14, 1061 (2017)

    Article  Google Scholar 

  33. 33.

    T.M. Schutzius, et al., Langmuir 31, 4807 (2015)

    Article  Google Scholar 

  34. 34.

    T. Maitra, et al., Langmuir 30, 10855 (2014)

    Article  Google Scholar 

  35. 35.

    X. Sun, V.G. Damle, K. Rykaczewski, Adv. Mater. Interfaces 2, 1400479 (2015)

    Article  Google Scholar 

  36. 36.

    P. Hao, C. Lv, X. Zhang, Appl. Phys. Lett. 104, 111604 (2014)

    Google Scholar 

  37. 37.

    M. He, et al., Appl. Phys. Lett. 98, 162505 (2011)

    Article  Google Scholar 

  38. 38.

    H.F. Zhang, Y.Z. Rong Lv, C. Yang, Int. J. Thermal Sci. 202, 59 (2016)

    Article  Google Scholar 

  39. 39.

    P. Tourkine, M. Le Merrer, D. Quere, Langmuir 25, 7214 (2009)

    Article  Google Scholar 

  40. 40.

    A. Alizadeh, et al., Langmuir 28, 3180 (2012)

    Article  Google Scholar 

  41. 41.

    D.M. Anderson, S.H. Davis, J. Fluid Mech. 268, 34 (1994)

    Article  Google Scholar 

  42. 42.

    A.F. Mills, inHeat transfer (CRC Press, Homewood, Illinois, 1992), p. 888

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Pirouz Kavehpour.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjst/e2020-900273-x.

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alizadeh-Birjandi, E., Tavakoli-Dastjerdi, F., Leger, J.S. et al. Delay of ice formation on penguin feathers. Eur. Phys. J. Spec. Top. 229, 1881–1896 (2020). https://doi.org/10.1140/epjst/e2020-900273-x

Download citation