Skip to main content

Advertisement

SpringerLink
Minimal chimera states in phase-lag coupled mechanical oscillators
Download PDF
Download PDF

Associated Content

Part of a collection:

Nonlinear and Complex Physics

  • Regular Article
  • Open Access
  • Published: 28 September 2020

Minimal chimera states in phase-lag coupled mechanical oscillators

  • P. Ebrahimzadeh  ORCID: orcid.org/0000-0002-9919-39001,
  • M. Schiek1,
  • P. Jaros2,
  • T. Kapitaniak2,
  • S. van Waasen1,3 &
  • …
  • Y. Maistrenko1,2,4 

The European Physical Journal Special Topics volume 229, pages 2205–2214 (2020)Cite this article

  • 8177 Accesses

  • 7 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We obtain experimental chimera states in the minimal network of three identical mechanical oscillators (metronomes), by introducing phase-lagged all-to-all coupling. For this, we have developed a real-time model-in-the-loop coupling mechanism that allows for flexible and online change of coupling topology, strength and phase-lag. The chimera states manifest themselves as a mismatch of average frequency between two synchronous and one desynchronized oscillator. We find this kind of striking “chimeric” behavior is robust in a wide parameter region. At other parameters, however, chimera state can lose stability and the system behavior manifests itself as a heteroclinic switching between three saddle-type chimeras. Our experimental observations are in a qualitative agreement with the model simulation.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  2. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  3. D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    Article  ADS  Google Scholar 

  4. C.R. Laing, Physica D 238, 1569 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.R. Laing, Phys. Rev. E 81, 066221 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.R. Laing, Physica D 240, 1960 (2011)

    Article  ADS  Google Scholar 

  7. E.A. Martens, C.R. Laing, S.H. Strogatz, Phys. Rev. Lett. 104, 044101 (2010)

    Article  ADS  Google Scholar 

  8. A.E. Motter, Nat. Phys. 6, 164 (2010)

    Article  Google Scholar 

  9. O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Phys. Rev. E 81, 065201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Wolfrum, O.E. Omelchenko, S. Yanchuk, Yu. Maistrenko, Chaos 21, 013112 (2010)

    Article  ADS  Google Scholar 

  11. M. Wolfrum, O.E. Omelchenko, Phys. Rev. E 84, 015201(R) (2011)

    Article  ADS  Google Scholar 

  12. I. Omelchenko, Y.L. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    Article  ADS  Google Scholar 

  13. Yu. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V. Maistrenko, Int. J. Bifurc. Chaos Appl. Sci. Eng. 24, 1440014 (2014)

    Article  Google Scholar 

  14. A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)

    Article  ADS  Google Scholar 

  15. F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, Chaos 26, 094815 (2016)

    Article  ADS  Google Scholar 

  16. L. Larger, B. Penkovsky, Y.L. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)

    Article  ADS  Google Scholar 

  17. L. Larger, B. Penkovsky, Y.L. Maistrenko, Nat. Commun. 6, 7752 (2015)

    Article  ADS  Google Scholar 

  18. A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  19. M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  20. L. Schmidt, K. Schönleber, K. Krischer, V. Garca-Morales, Chaos 24, 013102 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Nat. Phys 14, 282 (2018)

    Article  Google Scholar 

  22. E.A. Marten, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Natl. Acad. Sci. USA 110, 10563 (2013)

    Article  ADS  Google Scholar 

  23. T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Yu. Maistrenko, Sci. Rep. 4, 6379 (2014)

    Article  ADS  Google Scholar 

  24. J. Wojewoda, K. Czolczynski, Yu. Maistrenko, T. Kapitaniak, Sci. Rep. 6, 34329 (2016)

    Article  ADS  Google Scholar 

  25. T. Chouzouris, I. Omelchenko, A. Zakharova, J. Hlinka, P. Jiruska, E. Schöll, Chaos 28, 045112 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Hizandis, N.E. Kouvaris, G. Zamora-Lopez, A. Diaz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016)

    Article  ADS  Google Scholar 

  27. S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2019)

    Article  ADS  Google Scholar 

  28. A.E. Motter, S.A. Myers, M. Angel, T. Nishikawa, Nat. Phys. 9, 191 (2013)

    Article  Google Scholar 

  29. L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Nat. Commun. 5, 4709 (2014)

    Article  Google Scholar 

  30. J.C. Gonzales-Avella, M.G. Cosenza, M.S. Miguel, Physica A 399, 24 (2014)

    Article  ADS  Google Scholar 

  31. M. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    Article  ADS  Google Scholar 

  32. E. Shoell, Eur. Phys. J. Special Topics 225, 891 (2016)

    Article  ADS  Google Scholar 

  33. O.E. Omel’chenko, Nonlinearity 31, R121 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Ashwin, O. Burylko, Chaos 25, 013106 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, Yu. Maistrenko, Chaos 28, 011103 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. P. Aswin, O. Burylko, Y. Maistrenko, Physica D 237, 454 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Bick, Phys. Rev. Lett. E 97, 050201(R) (2018)

    Article  ADS  Google Scholar 

  38. Y. Maistrenko, S. Brezetsky, P. Jaros, R. Levchenko, T. Kapitaniak, Phys. Rev. E 95, 010203 (2017)

    Article  ADS  Google Scholar 

  39. P. Aswin, G.P. King, J.W. Swift, Nonlinearity 3, 585 (1990)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Authors and Affiliations

  1. Forschungszentrum Jülich GmbH, ZEA-2: Electronics Systems, 52428, Jülich, Germany

    P. Ebrahimzadeh, M. Schiek, S. van Waasen & Y. Maistrenko

  2. Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924, Lodz, Poland

    P. Jaros, T. Kapitaniak & Y. Maistrenko

  3. Department of Electronics and Informatics, University Duisburg-Essen, Duisburg, Germany

    S. van Waasen

  4. Institute of Mathematics and Center for Medical and Biotechnical Research, National Academy of Science of Ukraine, Tereshchenkivska St. 3, 01030, Kyiv, Ukraine

    Y. Maistrenko

Authors
  1. P. Ebrahimzadeh
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. M. Schiek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. P. Jaros
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. T. Kapitaniak
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. S. van Waasen
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Y. Maistrenko
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to P. Ebrahimzadeh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzadeh, P., Schiek, M., Jaros, P. et al. Minimal chimera states in phase-lag coupled mechanical oscillators. Eur. Phys. J. Spec. Top. 229, 2205–2214 (2020). https://doi.org/10.1140/epjst/e2020-900270-4

Download citation

  • Received: 29 November 2019

  • Accepted: 08 June 2020

  • Published: 28 September 2020

  • Issue Date: September 2020

  • DOI: https://doi.org/10.1140/epjst/e2020-900270-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Nonlinear and Complex Physics

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.