Interaction between an aerodynamically driven, wall-bound drop and a single groove

Abstract

The interaction between an air-driven, wall-bound drop and a groove in the wall of a channel flow has been investigated experimentally using a high-speed video system. Three major outcomes of drop interaction with the groove are observed: (i) the drop passes over the groove, (ii) the drop is immediately fully captured in the groove or (iii) the drop is captured after first wetting the rear side of the groove. The mechanisms leading to these different outcomes are governed by the aerodynamic drag force, by inertial and gravity forces, and by the adhesion force associated with the substrate wettability. A threshold condition for drop capture is developed, based on the ratio of the typical time for drop passage over the groove to the time for the drop to be sucked into the groove. It has been shown that the probability for drop capture increases for higher Bond numbers.

References

  1. 1.

    S. Tarquini, C. Antonini, A. Amirfazli, M. Marengo, J. Palacios, Cold Reg. Sci. Tech. 100, 50 (2014)

    Article  Google Scholar 

  2. 2.

    T. Theodorsen, W.C. Clay, Technical report 403, National Advisory Committee for Aeronautics (Langley Aeronautical Lab., Langley Field, VA, USA, 1933), document ID 19930091477

  3. 3.

    T. Hagemeier, M. Hartmann, D. Thévenin, Int. J. Multiph. Flow 37, 860 (2011)

    Article  Google Scholar 

  4. 4.

    C. Neinhuis, W. Barthlott, Ann. Bot. 79, 667 (1997)

    Article  Google Scholar 

  5. 5.

    A. Marmur, Langmuir 20, 3517 (2004)

    Article  Google Scholar 

  6. 6.

    K.J. Stout, L. Blunt, Int. J. Mach. Tool Manu. 41, 2039 (2001)

    Article  Google Scholar 

  7. 7.

    P. Dimitrakopoulos, J.J.L. Higdon, J. Fluid Mech. 336, 351 (1997)

    ADS  Article  Google Scholar 

  8. 8.

    A. Milne, A. Amirfazli, Langmuir 25, 14155 (2009)

    Article  Google Scholar 

  9. 9.

    S. Madani, A. Amirfazli, Colloids Surf. A Physicochem. Eng. Aspects 441, 796 (2014)

    Article  Google Scholar 

  10. 10.

    P.M. Seiler, M. Gloerfeld, I.V. Roisman, C. Tropea, Phys. Rev. Fluids 4, 024001 (2019)

    ADS  Article  Google Scholar 

  11. 11.

    M. Dianat, M. Skarysz, A. Garmory, Int. J. Multiph. Flow 91, 19 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    M. Dianat, M. Skarysz, G. Hodgson, A. Garmory, M. Passmore, SAE Int. J. Passeng. Cars - Mech. Syst. 10, 369 (2017)

    Article  Google Scholar 

  13. 13.

    P.M. Seiler, Aerodynamically driven wall-bounded drop motion and rivulet formation, Ph.D. thesis, Technische Universität, 2019

  14. 14.

    A. Trujillo-Pino, K. Krissian, M. Alemán-Flores, D. Santana-Cedrés, Image Vis. Comput. 31, 72 (2013)

    Article  Google Scholar 

  15. 15.

    S.F. Chini, A. Amirfazli, Colloids Surf. A 388, 29 (2011)

    Article  Google Scholar 

  16. 16.

    M.J. Shelley, F.R. Tian, K. Wlodarski, Nonlinearity 10, 1471 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    J. Bohr, S. Brunak, T. Nørretranders, Europhys. Lett. 25, 245 (1994)

    ADS  Article  Google Scholar 

  18. 18.

    M.B. Amar, D. Bonn, Physica D 209, 1 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    V.T. Gurumurthy, D. Rettenmaier, I.V. Roisman, C. Tropea, S. Garoff, Colloids Surf. A 544, 118 (2018)

    Article  Google Scholar 

  20. 20.

    F. Gerlach, M. Hartmann, C. Tropea, Colloids Surf. A 583, 123977 (2019)

    Article  Google Scholar 

  21. 21.

    D. Rettenmaier, Numerical simulation of shear driven wetting, Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2019

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilia V. Roisman.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seiler, P.M., Roisman, I.V. & Tropea, C. Interaction between an aerodynamically driven, wall-bound drop and a single groove. Eur. Phys. J. Spec. Top. 229, 1757–1769 (2020). https://doi.org/10.1140/epjst/e2020-900269-5

Download citation