Sweeping by sessile drop coalescence

Abstract

During coalescence of liquid drops contacting a solid, the liquid sweeps wetted and solid-projected areas. The extent of sweeping dictates the performance of devices such as self-cleaning surfaces, anti-frost coatings, water harvesters, and dropwise condensers. For these applications, weakly- and non-wetting solid substrates are preferred as they enhance drop dynamical behavior. Accordingly, our coalescence studies here are restricted to drops with contact angle 90° ≤ θ0 ≤ 180°. Binary sessile drop coalescence is the focus, with volume of fluid simulations employed as the primary tool. The simulations, which incorporate a Kistler dynamic contact angle model, are first validated against three different experimental substrate systems and then used to study the influence of solid wettability on sweeping by modifying θ0. With increasing θ0 up to 150°, wetted and projected swept areas both increase as drop center of mass heightens. For θ0 ≥ 150°, coalescence-induced drop jumping occurs owing to the decreasing wettability of the substrate and a focusing of liquid momentum due to the symmetry-breaking solid. In this regime, projected swept area continues to increase with θ0 while wetted swept area reaches a maximum and then decreases. The sweeping results are interpreted using the mechanical energy balance from hydrodynamic theory and also compared to free drop coalescence.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Takeda, A. Nakajima, Y. Murata, K. Hashimoto, T. Watanabe, Jpn. J. Appl. Phys. 41, 287 (2002)

    ADS  Google Scholar 

  2. 2.

    P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Langmuir 25, 12293 (2009)

    Google Scholar 

  3. 3.

    G. Heydari, E. Thormann, M. Järn, E. Tyrode, P.M. Claesson, J. Phys. Chem. C 117, 21752 (2013)

    Google Scholar 

  4. 4.

    S. Dash, S.V. Garimella, Phys. Rev. E 89, 042402 (2014)

    ADS  Google Scholar 

  5. 5.

    F. Tavakoli, H.P. Kavehpour, Langmuir 31, 2120 (2015)

    Google Scholar 

  6. 6.

    A. Menchaca-Rocha, A. Martínez-Dávalos, R. Núñez, S. Popinet, S. Zaleski, Phys. Rev. E 63, 046309 (2001)

    ADS  Google Scholar 

  7. 7.

    M.A. Nilsson, J.P. Rothstein, J. Colloid Interface Sci. 363, 646 (2011)

    ADS  Google Scholar 

  8. 8.

    H.P. Kavehpour, Annu. Rev. Fluid Mech. 47, 245 (2015)

    ADS  MathSciNet  Google Scholar 

  9. 9.

    K.M. Wisdom, J.A. Watson, X. Qu, F. Liu, G.S. Watson, C.-H. Chen, Proc. Natl. Acad. Sci. 110, 7992 (2013)

    ADS  Google Scholar 

  10. 10.

    J.B. Boreyko, C.P. Collier, ACS Nano 7, 1618 (2013)

    Google Scholar 

  11. 11.

    D. Beysens, C. R. Phys. 7, 1082 (2006)

    ADS  Google Scholar 

  12. 12.

    P. Meakin, Rep. Prog. Phys. 55, 157 (1992)

    ADS  Google Scholar 

  13. 13.

    A.M. Macner, S. Daniel, P.H. Steen, Langmuir 30, 1788 (2014)

    Google Scholar 

  14. 14.

    S. Kim, K.J. Kim, J. Heat Transfer 133, 081502 (2011)

    Google Scholar 

  15. 15.

    J. Eggers, J.R. Lister, H.A. Stone, J. Fluid Mech. 401, 293 (1999)

    ADS  MathSciNet  Google Scholar 

  16. 16.

    L. Duchemin, J. Eggers, C. Josserand, J. Fluid Mech. 487, 167 (2003)

    ADS  Google Scholar 

  17. 17.

    W.D. Ristenpart, P.M. McCalla, R.V. Roy, H.A. Stone, Phys. Rev. Lett. 97, 064501 (2006)

    ADS  Google Scholar 

  18. 18.

    M. Sellier, E. Trelluyer, Biomicrofluidics 3, 022412 (2009)

    Google Scholar 

  19. 19.

    M.W. Lee, D.K. Kang, S.S. Yoon, A.L. Yarin, Langmuir 28, 3791 (2012)

    Google Scholar 

  20. 20.

    J.F. Hernández-Sánchez, L.A. Lubbers, A. Eddi, J.H. Snoeijer, Phys. Rev. Lett. 109, 184502 (2012)

    ADS  Google Scholar 

  21. 21.

    Y. Sui, M. Maglio, P.D.M. Spelt, D. Legendre, H. Ding, Phys. Fluids 25, 101701 (2013)

    ADS  Google Scholar 

  22. 22.

    A. Eddi, K.G. Winkels, J.H. Snoeijer, Phys. Rev. Lett. 111, 144502 (2013)

    ADS  Google Scholar 

  23. 23.

    S. Mitra, S.K. Mitra, Phys. Rev. E 92, 033013 (2015)

    ADS  Google Scholar 

  24. 24.

    S.J. Gokhale, S. DasGupta, J.L. Plawsky, P.C. Wayner Jr., Phys. Rev. E 70, 051610 (2004)

    ADS  Google Scholar 

  25. 25.

    N. Kapur, P.H. Gaskell, Phys. Rev. E 75, 056315 (2007)

    ADS  Google Scholar 

  26. 26.

    Q. Liao, X. Zhu, S.M. Xing, H. Wang, Exp. Therm. Fluid Sci. 32, 1647 (2008)

    Google Scholar 

  27. 27.

    Y.-H. Lai, M.-H. Hsu, J.-T. Yang, Lab Chip 10, 3149 (2010)

    Google Scholar 

  28. 28.

    H. Wang, Q. Liao, X. Zhu, J. Li, X. Tian, J. Supercond. Nov. Magn. 23, 1165 (2010)

    Google Scholar 

  29. 29.

    G. Zhu, H. Fan, H. Huang, F. Duan, RSC Adv. 7, 23954 (2017)

    Google Scholar 

  30. 30.

    P.M. Somwanshi, K. Muralidhar, S. Khandekar, Phys. Fluids 30, 092103 (2018)

    ADS  Google Scholar 

  31. 31.

    C. Andrieu, D.A. Beysens, V.S. Nikolayev, Y. Pomeau, J. Fluid Mech. 453, 427 (2002)

    ADS  MathSciNet  Google Scholar 

  32. 32.

    R. Narhe, D. Beysens, V.S. Nikolayev, Langmuir 20, 1213 (2004)

    Google Scholar 

  33. 33.

    R. Narhe, D. Beysens, V.S. Nikolayev, Int. J. Thermophys. 26, 1743 (2005)

    ADS  Google Scholar 

  34. 34.

    D.A. Beysens, R.D. Narhe, J. Phys. Chem. B 110, 22133 (2006)

    Google Scholar 

  35. 35.

    R.D. Narhe, D.A. Beysens, Y. Pomeau, Europhys. Lett. 81, 46002 (2008)

    ADS  Google Scholar 

  36. 36.

    R.D. Narhe, M.D. Khandkar, P.B. Shelke, A.V. Limaye, D.A. Beysens, Phys. Rev. E 80, 031604 (2009)

    ADS  Google Scholar 

  37. 37.

    J.B. Boreyko, C.-H. Chen, Phys. Rev. Lett. 103, 184501 (2009)

    ADS  Google Scholar 

  38. 38.

    J.B. Boreyko, C.-H. Chen, Phys. Fluids 22, 091110 (2010)

    ADS  Google Scholar 

  39. 39.

    F.-C. Wang, F. Yang, Y.-P. Zhao, Appl. Phys. Lett. 98, 053112 (2011)

    ADS  Google Scholar 

  40. 40.

    B. Peng, S. Wang, Z. Lan, W. Xu, R. Wen, X. Ma, Appl. Phys. Lett. 102, 151601 (2013)

    ADS  Google Scholar 

  41. 41.

    Y. Nam, H. Kim, S. Shin, Appl. Phys. Lett. 103, 161601 (2013)

    ADS  Google Scholar 

  42. 42.

    X. Liu, P. Cheng, X. Quan, Int. J. Heat Mass Transf. 73, 195 (2014)

    Google Scholar 

  43. 43.

    F. Liu, G. Ghigliotti, J.J. Feng, C.-H. Chen, J. Fluid Mech. 752, 39 (2014)

    ADS  Google Scholar 

  44. 44.

    R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, E.N. Wang, ACS Nano 8, 10352 (2014)

    Google Scholar 

  45. 45.

    X. Liu, P. Cheng, Int. Commun. Heat Mass Transf. 64, 7 (2015)

    Google Scholar 

  46. 46.

    Y. Nam, D. Seo, C. Lee, S. Shin, Soft Matter 11, 154 (2015)

    ADS  Google Scholar 

  47. 47.

    S. Farokhirad, J.F. Morris, T. Lee, Phys. Fluids 27, 102102 (2015)

    ADS  Google Scholar 

  48. 48.

    K. Wang, Q. Liang, R. Jiang, Y. Zheng, Z. Lan, X. Ma, RSC Adv. 6, 99314 (2016)

    Google Scholar 

  49. 49.

    H. Cha, J.M. Chun, J. Sotelo, N. Miljkovic, ACS Nano 10, 8223 (2016)

    Google Scholar 

  50. 50.

    R. Attarzadeh, A. Dolatabadi, Phys. Fluids 29, 012104 (2017)

    ADS  Google Scholar 

  51. 51.

    K. Wang, Q. Liang, R. Jiang, Y. Zheng, Z. Lan, X. Ma, Langmuir 33, 6258 (2017)

    Google Scholar 

  52. 52.

    Q. Sheng, J. Sun, W. Wang, H.S. Wang, C.G. Bailey, J. Appl. Phys. 122, 245301 (2017)

    ADS  Google Scholar 

  53. 53.

    T. Mouterde, T.-V. Nguyen, H. Takahashi, C. Clanet, I. Shimoyama, D. Quéré, Phys. Rev. Fluids 2, 112001(R) (2017)

    ADS  Google Scholar 

  54. 54.

    K. Wang, R. Li, Q. Liang, R. Jiang, Y. Zheng, Z. Lan, X. Ma, Appl. Phys. Lett. 111, 061603 (2017)

    ADS  Google Scholar 

  55. 55.

    J. Wasserfall, P. Figueiredo, R. Kneer, W. Rohlfs, P. Pischke, Phys. Rev. Fluids 2, 123601 (2017)

    ADS  Google Scholar 

  56. 56.

    P. Zhang, Y. Maeda, F. Lv, Y. Takata, D. Orejon, ACS Appl. Mater. Interfaces 9, 35391 (2017)

    Google Scholar 

  57. 57.

    Y. Shi, G.H. Tang, Comput. Math. with Appl. 75, 1213 (2018)

    MathSciNet  Google Scholar 

  58. 58.

    F. Chu, Z. Yuan, X. Zhang, X. Wu, Int. J. Heat Mass Transf. 121, 315 (2018)

    Google Scholar 

  59. 59.

    S. Gao, Q. Liao, W. Liu, Z. Liu, J. Phys. Chem. Lett. 9, 13 (2018)

    Google Scholar 

  60. 60.

    Y. Chen, Y. Lian, Phys. Fluids 30, 112102 (2018)

    ADS  Google Scholar 

  61. 61.

    S. Gao, Q. Liao, W. Liu, Z. Liu, J. Phys. Chem. C 122, 20521 (2018)

    Google Scholar 

  62. 62.

    Z. Yuan, R. Wu, X. Wu, Int. J. Heat Mass Transf. 135, 345 (2019)

    Google Scholar 

  63. 63.

    H. Wang, X. Zhu, Q. Liao, P.C. Sui, J. Supercond. Nov. Magn. 23, 1137 (2010)

    Google Scholar 

  64. 64.

    M. Ahmadlouydarab, J.J. Feng, J. Fluid Mech. 746, 214 (2014)

    ADS  MathSciNet  Google Scholar 

  65. 65.

    S. Moghtadernejad, M. Tembely, M. Jadidi, N. Esmail, A. Dolatabadi, Phys. Fluids 27, 032106 (2015)

    ADS  Google Scholar 

  66. 66.

    D. Seo, S. Oh, S. Shin, Y. Nam, Int. J. Heat Mass Transf. 114, 934 (2017)

    Google Scholar 

  67. 67.

    S. Mirjalili, C.B. Ivey, A. Mani, Int. J. Multiph. Flow 116, 221 (2019)

    MathSciNet  Google Scholar 

  68. 68.

    S. Dodds, M.S. Carvalho, S. Kumar, J. Fluid Mech. 707, 521 (2012)

    ADS  Google Scholar 

  69. 69.

    C.-H. Huang, M.S. Carvalho, S. Kumar, Phys. Rev. Fluids 4, 044005 (2019)

    ADS  Google Scholar 

  70. 70.

    Y.D. Shikhmurzaev,Capillary Flows with Forming Interfaces, 1st edn. (Chapman and Hall/, New York, 2007)

  71. 71.

    C.-Y. Liu, E. Vandre, M.S. Carvalho, S. Kumar, J. Fluid Mech. 808, 290 (2016)

    ADS  MathSciNet  Google Scholar 

  72. 72.

    S.F. Kistler, inWettability, edited by J.C. Berg (Marcel Dekker, New York, 1993)

  73. 73.

    H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 12, 620 (1998)

    ADS  Google Scholar 

  74. 74.

    J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)

    ADS  MathSciNet  Google Scholar 

  75. 75.

    Š. Šikalo, H.-D. Wilhelm, I.V. Roisman, S. Jakirlić, C. Tropea, Phys. Fluids 17, 062103 (2005)

    ADS  Google Scholar 

  76. 76.

    I.V. Roisman, L. Opfer, C. Tropea, M. Raessi, J. Mostaghimi, S. Chandra, Colloids Surfaces A 322, 183 (2008)

    Google Scholar 

  77. 77.

    A.A. Saha, S.K. Mitra, J. Colloid Interface Sci. 339, 461 (2009)

    ADS  Google Scholar 

  78. 78.

    P.J. Graham, M.M. Farhangi, A. Dolatabadi, Phys. Fluids 24, 112105 (2012)

    ADS  Google Scholar 

  79. 79.

    J. Xu, Y. Chen, J. Xie, Int. J. Heat Mass Transf. 116, 951 (2018)

    Google Scholar 

  80. 80.

    R.L. Hoffman, J. Colloid Interface Sci. 50, 228 (1975)

    ADS  Google Scholar 

  81. 81.

    R.I. Issa, J. Comput. Phys. 62, 40 (1986)

    ADS  MathSciNet  Google Scholar 

  82. 82.

    E.B. Dussan V., S.H. Davis, J. Fluid Mech. 173, 115 (1986)

    ADS  Google Scholar 

  83. 83.

    H.J. Cho, D.J. Preston, Y. Zhu, E.N. Wang, Nat. Rev. Mater. 2, 16092 (2016)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul H. Steen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material in the form of one zip file available from the Journal web page at https://doi.org/10.1140/epjst/e2020-900265-5

Electronic supplementary material

Supplementary data

ZIP file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ludwicki, J.M., Steen, P.H. Sweeping by sessile drop coalescence. Eur. Phys. J. Spec. Top. 229, 1739–1756 (2020). https://doi.org/10.1140/epjst/e2020-900265-5

Download citation