Dewetting with conical tail formation: how to include a line friction of microscopic origin, and possibly evaporation?

Abstract

Most studies of dewetting fronts in 3D with a “corner formation”, as happens behind a drop sliding down an incline are based on a generalisation of Voinov theory, with (at least implicitly) a slip length at small scale. I here first examine what happens, if instead of considering a free slip at small scale, one admits a non-zero additional line friction of microscopic origin. Concerning the selection of cone angles, I show that most features of the model are unchanged, except that the “slip length” must be replaced in the equations with an “effective” cut off that can become apparently unphysically small. I suggest that these results could explain problematical cut-offs in the hydrodynamical modelling observed recently by Winkels et al. on water drops [K.G. Winkels, I.R. Peters, J. Snoeijer, F. Evangelista, M. Riepen, A. Daerr, L. Limat, Eur. Phys. J. Special Topics 192, 195 (2011)]. The sole difficulty with this interpretation is the law ruling the radius of curvature of the corner tip at small scale, which remains unsatisfactory. I suggest that evaporation of the liquid should also be considered at these very small scales and propose a preliminary “toy model” to take this effect into account. The orders of magnitude are better recovered without changing the structure of the equations developed initially for “classical” wetting dynamics with silicon oil drops.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  Google Scholar 

  2. 2.

    T.D. Blake, K.J. Ruschak, inLiquid film coating, edited by P.M. Schweizer, S.F. Kistler (Chapman and Hall, London, 1997), pp. 63–97

  3. 3.

    J. De Coninck, T.D. Blake, Ann. Rev. Mat. Res. 38, 1 (2008)

    ADS  Google Scholar 

  4. 4.

    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)

    ADS  Google Scholar 

  5. 5.

    J.H. Snoeijer, B. Andreotti, Ann. Rev. Fluid Mech. 45, 269 (2013)

    ADS  Google Scholar 

  6. 6.

    T. Podgorski, J.M. Flesselles, L. Limat, Phys. Rev. Lett. 87, 036102 (2001)

    ADS  Google Scholar 

  7. 7.

    N. Le Grand, A. Daerr, L. Limat, J. Fluid Mech. 541, 293 (2005)

    ADS  Google Scholar 

  8. 8.

    J.H. Snoeijer, E. Rio, N. Le Grand, L. Limat, Phys. Fluids 17, 072101 (2005)

    ADS  MathSciNet  Google Scholar 

  9. 9.

    J.H. Snoeijer, N. Le Grand, L. Limat, H.A. Stone, J. Eggers, Phys. Fluids 19, 042104 (2007)

    ADS  Google Scholar 

  10. 10.

    I. Peters, J.H. Snoeijer, A. Daerr, L. Limat, Phys. Rev. Lett. 103, 114501 (2009)

    ADS  Google Scholar 

  11. 11.

    K.G. Winkels, I.R. Peters, J. Snoeijer, F. Evangelista, M. Riepen, A. Daerr, L. Limat, Eur. Phys. J. Special Topics 192, 195 (2011)

    ADS  Google Scholar 

  12. 12.

    B.A. Puthenveettil, V.K. Kumar, E.J. Hopfinger, J. Fluid Mech. 726, 26 (2013)

    ADS  Google Scholar 

  13. 13.

    L. Limat, H.A. Stone, Europhys. Lett. 65, 365 (2004)

    ADS  Google Scholar 

  14. 14.

    O.V. Voinov, Fluid Dyn. 11, 714 (1976)

    ADS  Google Scholar 

  15. 15.

    R.G. Cox, J. Fluid Mech. 168, 169 (1986)

    ADS  Google Scholar 

  16. 16.

    T.D. Blake, K.J. Ruschak, Nature 282, 489 (1979)

    ADS  Google Scholar 

  17. 17.

    R. Burley, B.S. Kennedy, Chem. Eng. Sci. 31, 901 (1976)

    Google Scholar 

  18. 18.

    H. Benkreira, J.B. Ikin, Chem. Eng. Sci. 65, 1790 (2010)

    Google Scholar 

  19. 19.

    E. Vandre, M.S. Carvalho, S. Kumar, Phys. Fluids 25, 102103 (2013)

    ADS  Google Scholar 

  20. 20.

    M. He, S.R. Nagel, Phys. Rev. Lett. 122, 018001 (2019)

    ADS  Google Scholar 

  21. 21.

    T.D. Blake, J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)

    ADS  Google Scholar 

  22. 22.

    E. Rolley, C. Guthmann, Phys. Rev. Lett. 98, 166105 (2007)

    ADS  Google Scholar 

  23. 23.

    H. Perrin, R. Lhermerout, K. Davitt, E. Rolley, B. Andreotti, Soft Matter 14, 1581 (2018)

    ADS  Google Scholar 

  24. 24.

    P.G. Petrov, J.G. Petrov, Langmuir 8, 1762 (1992)

    Google Scholar 

  25. 25.

    M. de Ruijter, M. Charlot, M. Voué, J. De Coninck, Langmuir 16, 2363 (2000)

    Google Scholar 

  26. 26.

    L. Limat, J. Fluid Mech. 738, 1 (2014)

    ADS  Google Scholar 

  27. 27.

    M. Fermigier, P. Jenffer, J. Colloid Interface Sci. 146, 226 (1991)

    ADS  Google Scholar 

  28. 28.

    P. Hayoun, Partial wetting of thin liquid films in polymer tubes, PhD thesis, Université Pierre et Marie Curie, Paris 6, 2016

  29. 29.

    A. Rednikov, P. Colinet, Phys. Rev. E 87, 010401(R) (2013)

    ADS  Google Scholar 

  30. 30.

    V. Janecek, B. Andreotti, D. Prazak, T. Barta, V.S. Nikolayev, Phys. Rev. E 88, 060404(R) (2013)

    ADS  Google Scholar 

  31. 31.

    Y. Pomeau, C. R. Acad. Sci., Ser. IIb 328, 411 (2000)

    ADS  Google Scholar 

  32. 32.

    L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000)

    ADS  MathSciNet  Google Scholar 

  33. 33.

    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    ADS  Google Scholar 

  34. 34.

    G. Berteloot, C.-T. Pham, A. Daerr, F. Lequeux, L. Limat, Europhys. Lett. 83, 14003 (2008)

    ADS  Google Scholar 

  35. 35.

    C.-T. Pham, G. Berteloot, F. Lequeux, L. Limat, Europhys. Lett. 93, 69901 (2010)

    ADS  Google Scholar 

  36. 36.

    J. Eggers, L.M. Pismen, Phys. Fluids 22, 112101 (2010)

    ADS  Google Scholar 

  37. 37.

    F. Doumenc, B. Guerrier, Eur. Phys. J. Special Topics 197, 281 (2011)

    ADS  Google Scholar 

  38. 38.

    M. Riepen, Dynamics of dewetting in immersion lithography, extended abstract from ECS 2013, European Coating Symposium (2013), edited by J. De Coninck; see also in the same booklet, L. Limat, Straight contact lines on soft solids and broken contact lines on hard substrates

  39. 39.

    D. Duvivier, Comportement de gouttes de mélange en situation de mouillage extrême, Doctoral thesis, Presses Universitaires de Mons, 2013

  40. 40.

    D. Duvivier, T. Blake, J. De Coninck, Langmuir 29, 10132 (2013)

    Google Scholar 

  41. 41.

    M. Ben Amar, J.L. Cummins, Y. Pomeau, Phys. Fluids 15, 2949 (2003)

    ADS  MathSciNet  Google Scholar 

  42. 42.

    H. Kim, C. Poelma, G. Ooms, J. Westerweel, J. Fluid Mech. 762, 393 (2015)

    ADS  MathSciNet  Google Scholar 

  43. 43.

    J.R. Castrejón-Pita, A.A. Castrejón-Pita, S.S. Thete, K. Sambath, I.M. Hutchings, J. Hinch, J.R. Lister, O.A. Basaran, Proc. Natl. Acad. Sci. 112, 4582 (2015)

    ADS  Google Scholar 

  44. 44.

    E. Rio, A. Daerr, B. Andreotti, L. Limat, Phys. Rev. Lett. 94, 024503 (2005)

    ADS  Google Scholar 

  45. 45.

    J.C. Fernandez-Toledano, T.D. Blake, L. Limat, J. de Coninck, J. Colloid Interface Sci. 548, 66 (2018)

    ADS  Google Scholar 

  46. 46.

    Y.O. Popov, T. Witten, Phys. Rev. E 68, 036306 (2003)

    ADS  Google Scholar 

  47. 47.

    C.E. Colosqui, Thermodynamics, Dynamics, and Kinetics of Nanostructured Fluid-Solid Interfaces, arXiv:1707.04750 (2017)

  48. 48.

    D. Sibley, A. Nold, S. Kalliadasis, J. Fluid Mech. 764, 445 (2015)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    J. Eggers, Phys. Fluids 16, 3491 (2004)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurent Limat.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Limat, L. Dewetting with conical tail formation: how to include a line friction of microscopic origin, and possibly evaporation?. Eur. Phys. J. Spec. Top. 229, 1833–1848 (2020). https://doi.org/10.1140/epjst/e2020-900244-1

Download citation