Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges

Abstract

After a brief overview of the ‘moving contact-line problem’ as it emerged and evolved as a research topic, a ‘litmus test’ allowing one to assess adequacy of the mathematical models proposed as solutions to the problem is described. Its essence is in comparing the contact angle, an element inherent in every model, with what follows from a qualitative analysis of some simple flows. It is shown that, contrary to a widely held view, the dynamic contact angle is not a function of the contact-line speed as for different spontaneous spreading flows one has different paths in the contact angle-versus-speed plane. In particular, the dynamic contact angle can decrease as the contact-line speed increases. This completely undermines the search for the ‘right’ velocity-dependence of the dynamic contact angle, actual or apparent, as a direction of research. With a reference to an earlier publication, it is shown that, to date, the only mathematical model passing the ‘litmus test’ is the model of dynamic wetting as an interface formation process. The model, which was originated back in 1993, inscribes dynamic wetting into the general physical context as a particular case in a wide class of flows, which also includes coalescence, capillary breakup, free-surface cusping and some other flows, all sharing the same underlying physics. New challenges in the field of dynamic wetting are discussed.

References

  1. 1.

    E.B. Dussan, Annu. Rev. Fluid Mech. 11, 371 (1979)

    ADS  Google Scholar 

  2. 2.

    P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  Google Scholar 

  3. 3.

    Y. Pomeau, C. R. Mécanique 330, 207 (2002)

    ADS  Google Scholar 

  4. 4.

    T.D. Blake, J. Colloid Interface Sci. 299, 1 (2006)

    ADS  Google Scholar 

  5. 5.

    J. Ralston, M. Popescu, R. Sedev, Annu. Rev. Mater. Res. 38, 23 (2008)

    ADS  Google Scholar 

  6. 6.

    L. Gao, T.J. McCarthy, Langmuir 25, 14105 (2009)

    Google Scholar 

  7. 7.

    Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 197, 47 (2011)

    ADS  Google Scholar 

  8. 8.

    P.-G. de Gennes, F. Brochard-Wyat, D. Quéré,Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004)

  9. 9.

    V.M. Starov, M.G. Velarde, C.J. Radke,Wetting and Spreading Dynamics (CRC Press, 2007)

  10. 10.

    Y.D. Shikhmurzaev,Capillary Flows with Forming Interfaces (Chapman & Hall/CRC, Boca Raton-London-New York, 2007)

  11. 11.

    U. Thiele, Eur. Phys. J. Special Topics 197, 67 (2011)

    ADS  Google Scholar 

  12. 12.

    Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 197, 221 (2011)

    ADS  Google Scholar 

  13. 13.

    L.M. Pismen, Eur. Phys. J. Special Topics 197, 63 (2011)

    ADS  Google Scholar 

  14. 14.

    Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 197, 75 (2011)

    ADS  Google Scholar 

  15. 15.

    Y. Pomeau, Eur. Phys. J. Special Topics 197, 81 (2011)

    ADS  Google Scholar 

  16. 16.

    Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 197, 85 (2011)

    ADS  Google Scholar 

  17. 17.

    J.R. Henderson, Eur. Phys. J. Special Topics 197, 61 (2011)

    ADS  Google Scholar 

  18. 18.

    Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 197, 125 (2011)

    ADS  Google Scholar 

  19. 19.

    T.D. Blake, Eur. Phys. J. Special Topics 197, 343 (2011)

    ADS  Google Scholar 

  20. 20.

    Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 197, 73 (2011)

    ADS  Google Scholar 

  21. 21.

    G.D. West, Proc. Roy. Soc. A86, 20 (1911)

    ADS  Google Scholar 

  22. 22.

    W.B. Hardy, Philos. Mag. 38, 49 (1919)

    Google Scholar 

  23. 23.

    R. von Lucas, Koll. Zeitschr. 23, 15 (1918)

    Google Scholar 

  24. 24.

    E.W. Washburn, Phys. Rev. 17, 273 (1921)

    ADS  Google Scholar 

  25. 25.

    C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)

    ADS  Google Scholar 

  26. 26.

    H.K. Moffatt, J. Fluid Mech. 18, 1 (1964)

    ADS  Google Scholar 

  27. 27.

    E.B. Dussan, S.H. Davis, J. Fluid Mech. 65, 71 (1974)

    ADS  Google Scholar 

  28. 28.

    E.B. Dussan, J. Fluid Mech. 77, 665 (1976)

    ADS  Google Scholar 

  29. 29.

    L.M. Hocking, J. Fluid Mech. 79, 209 (1977)

    ADS  Google Scholar 

  30. 30.

    C. Huh, S.G. Mason, J. Fluid Mech. 81, 401 (1977)

    ADS  Google Scholar 

  31. 31.

    H.P. Greenspan, J. Fluid Mech. 84, 125 (1978)

    ADS  Google Scholar 

  32. 32.

    P.A. Durbin, J. Fluid Mech. 197, 157 (1988)

    ADS  Google Scholar 

  33. 33.

    M.Y. Zhou, P. Sheng, Phys. Rev. Lett. 64, 882 (1990)

    ADS  Google Scholar 

  34. 34.

    T. Qian, X.-P. Wang, P. Sheng, Phys. Rev. E 68, 016306 (2003)

    ADS  Google Scholar 

  35. 35.

    W. Ren, Phys. Fluids 19, 022101 (2007)

    ADS  Google Scholar 

  36. 36.

    J.J. Thalakkottor, K. Mohseni, Phys. Rev. E 94, 023113 (2016)

    ADS  Google Scholar 

  37. 37.

    K. Yokoi, D. Vadillo, J. Hinch, I. Hutchings, Phys. Fluids 21, 072102 (2009)

    ADS  Google Scholar 

  38. 38.

    S. van Mourik, A.E.P. Veldman, M.E. Dreyer, Microgravity Sci. Technol. 17, 87 (2005)

    ADS  Google Scholar 

  39. 39.

    O. Weinstein, L.M. Pismen, Math. Modelling Nat. Phenomena 3, 98 (2008)

    MathSciNet  Google Scholar 

  40. 40.

    M. Navier, Mem. Acad. Sci. Inst. France 6, 389 (1823)

    Google Scholar 

  41. 41.

    Y.D. Shikhmurzaev, J. Fluid Mech. 334, 211 (1997)

    ADS  MathSciNet  Google Scholar 

  42. 42.

    D.N. Sibley, N. Savva, S. Kalliadasis, Phys. Fluids 24, 082105 (2002)

    ADS  Google Scholar 

  43. 43.

    P. Colinet, A. Rednikov, Eur. Phys. J. Special Topics 197, 89 (2011)

    ADS  Google Scholar 

  44. 44.

    D.J. Benney, W.J. Timson, Stud. Appl. Math. 63, 93 (1980)

    MathSciNet  Google Scholar 

  45. 45.

    L.M. Pismen, A. Nir, Phys. Fluids 25, 3 (1982)

    ADS  Google Scholar 

  46. 46.

    C.G. Ngan, E.B. Dussan, Phys. Fluids 27, 2785 (1984)

    ADS  Google Scholar 

  47. 47.

    J. Koplik, J.R. Banavar, J.F. Willemsen, Phys. Rev. Lett. 60, 1282 (1988)

    ADS  Google Scholar 

  48. 48.

    P.A. Thompson, M.O. Robbins, Phys. Rev. Lett. 63, 766 (1989)

    ADS  Google Scholar 

  49. 49.

    J.L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)

    ADS  Google Scholar 

  50. 50.

    H. Brenner, V. Ganesan, Phys. Rev. E 61, 6879 (2000)

    ADS  Google Scholar 

  51. 51.

    T. Young, Trans. Roy. Soc. (London) 95, 65 (1805)

    ADS  Google Scholar 

  52. 52.

    J.W. Gibbs, inCollected Works of J. Willard Gibbs (Longmans, Green & Co., New York, 1928), Vol. 1

  53. 53.

    G.J. Merchant, J.B. Keller, Phys. Fluids A 4, 477 (1992)

    ADS  MathSciNet  Google Scholar 

  54. 54.

    D. Seveno, T.D. Blake, J. De Coninck, Phys. Rev. Lett. 111, 096101 (2013)

    ADS  Google Scholar 

  55. 55.

    A.V. Lukyanov, A.E. Likhtman, ACS Nano 10, 6045 (2016)

    Google Scholar 

  56. 56.

    J-C. Fernandez-Toledano, T.D. Blake, J. De Coninck, Langmuir 33, 2929 (2017)

    Google Scholar 

  57. 57.

    R. Finn, Phys. Fluids 18, 047102 (2006)

    ADS  MathSciNet  Google Scholar 

  58. 58.

    Y.D. Shikhmurzaev, Phys. Lett. A 372, 704 (2008)

    ADS  Google Scholar 

  59. 59.

    Lord Rayleigh, Phil. Mag. 30, 386 (1890)

    Google Scholar 

  60. 60.

    H.B. Eral, D.J.C.M. Mannetje, J.M. Oh, Colloid Polym. Sci. 291, 247 (2013)

    Google Scholar 

  61. 61.

    J.W. Drelich, Adv. Colloid & Interf. Sci. 267, 1 (2019)

    Google Scholar 

  62. 62.

    R. Ablett, Philos. Mag. 46, 244 (1923)

    Google Scholar 

  63. 63.

    G.D. Yarnold, B.J. Mason, Proc. Phys. Soc. (London) B62, 125 (1949)

    ADS  Google Scholar 

  64. 64.

    P.J. Haley, M.J. Miksis, J. Fluid Mech. 223, 57 (1991)

    ADS  MathSciNet  Google Scholar 

  65. 65.

    P. Ehrhard, S.H. Davis, J. Fluid Mech. 229, 365 (1991)

    ADS  Google Scholar 

  66. 66.

    Y. Xia, P.H. Steen, J. Fluid Mech. 841, 767 (2018)

    ADS  Google Scholar 

  67. 67.

    T.D. Blake, J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)

    ADS  Google Scholar 

  68. 68.

    T.D. Blake, A. Clarke, J. De Coninck, M.J. de Ruijter, Langmuir 13, 2164 (2013)

    Google Scholar 

  69. 69.

    J-C. Fernandez-Toledano, T.D. Blake, J. De Coninck, J. Colloid Interface Sci. 540, 322 (2019)

    ADS  Google Scholar 

  70. 70.

    T. Qian, X.-P. Wang, P. Sheng, J. Fluid Mech. 564, 333 (2006)

    ADS  MathSciNet  Google Scholar 

  71. 71.

    W. Ren, Phys. Fluids 22, 102103 (2010)

    ADS  Google Scholar 

  72. 72.

    P. Yue, J.J. Feng, Phys. Fluids 23, 012106 (2011)

    ADS  Google Scholar 

  73. 73.

    L. Chen, E. Bonaccurso, T. Gambaryan-Roisman, V. Starov, N. Koursari, Y. Zhao, Curr. Opin. Colloid Interf. Sci. 36 (2018)

  74. 74.

    P. Johansson, B. Hess, Phys. Rev. Fluids 3, 074201 (2018)

    ADS  Google Scholar 

  75. 75.

    X. Xu, Y. Di, H. Yu, J. Fluid Mech. 849, 805 (2018)

    ADS  MathSciNet  Google Scholar 

  76. 76.

    A. Reusken, X. Xu, L. Zhang, Intl J. Numer. Meth. Fluids 84, 268 (2017)

    ADS  Google Scholar 

  77. 77.

    H.S.H. Mohand, H. Hoang, G. Galliero, D. Legendre, J. Comput. Phys. 393, 29 (2019)

    ADS  MathSciNet  Google Scholar 

  78. 78.

    O.V. Voinov, Sov. Phys. – Doklady 23, 891 (1978)

    ADS  Google Scholar 

  79. 79.

    S.H. Davis, J. Fluid Mech. 98, 225 (1980)

    ADS  MathSciNet  Google Scholar 

  80. 80.

    R.G. Cox, J. Fluid Mech. 168, 169 (1986)

    ADS  Google Scholar 

  81. 81.

    E.L. Decker, B. Frank, Y. Suo, S. Garoff, Colloids Surf. A 156, 177 (1999)

    Google Scholar 

  82. 82.

    L. Chen, J. Yu, H. Wang, ACS Nano 8, 11493 (2014)

    Google Scholar 

  83. 83.

    Y. Deng, L. Chen, Q. Liu, J. Yu, H. Wang, J. Phys. Chem. Lett. 7, 1763 (2016)

    Google Scholar 

  84. 84.

    Q. Wu, H. Wong, J. Fluid Mech. 506, 157 (2004)

    ADS  MathSciNet  Google Scholar 

  85. 85.

    J. Eggers, H.A. Stone, J. Fluid Mech. 505, 309 (2004)

    ADS  Google Scholar 

  86. 86.

    P.G. Petrov, J. Petrov, Langmuir 8, 1762 (1992)

    Google Scholar 

  87. 87.

    L.H. Tanner, J. Phys. D: Appl. Phys. 12, 1473 (1979)

    ADS  Google Scholar 

  88. 88.

    A. Milchev, K. Binder, J. Chem. Phys. 116, 7691 (2002)

    ADS  Google Scholar 

  89. 89.

    G. He, N.G. Hadjiconstantinou, J. Fluid Mech. 497, 123 (2003)

    ADS  Google Scholar 

  90. 90.

    L. Giacomelli, M.V. Gnann, F. Otto, Nonlinearity 29, 2497 (2016)

    ADS  MathSciNet  Google Scholar 

  91. 91.

    D. Seveno, A. Vaillant, R. Rioboo, H. Adao, J. Conti, J. De Coninck, Langmuir 25, 13034 (2009)

    Google Scholar 

  92. 92.

    M.J. de Ruijter, J. De Coninck, G. Oshanin, Langmuir 15, 2209 (1999)

    Google Scholar 

  93. 93.

    M.J. Davis, S.H. Davis, C. R. Phys. 14, 629 (2013)

    ADS  Google Scholar 

  94. 94.

    A.M. Karim, S.H. Davis, H.P. Kavehpour, Langmuir 32, 10153 (2016)

    Google Scholar 

  95. 95.

    T.D. Blake, A. Clarke, K.J. Ruschak, AIChE J. 40, 229 (1994)

    Google Scholar 

  96. 96.

    T.D. Blake, M. Bracke, Y.D. Shikhmurzaev, Phys. Fluids 11, 1995 (1999)

    ADS  Google Scholar 

  97. 97.

    A. Clarke, E. Stattersfield, Phys. Fluids 18, 048109 (2006)

    ADS  Google Scholar 

  98. 98.

    C.-Y. Liu, E. Vandre, M.S. Carvalho, S. Kumar, J. Fluid Mech. 808, 290 (2016)

    ADS  MathSciNet  Google Scholar 

  99. 99.

    M.C.T. Wilson, J.L. Summers, Y.D. Shikhmurzaev, A. Clarke, T.D. Blake, Phys. Rev. E 73, 041606 (2006)

    ADS  Google Scholar 

  100. 100.

    I.S. Bayer, C.M. Megaridis, J. Fluid Mech. 558, 415 (2006)

    ADS  Google Scholar 

  101. 101.

    Y.D. Shikhmurzaev, Physica D 217, 121 (2006)

    ADS  MathSciNet  Google Scholar 

  102. 102.

    Y.D. Shikhmurzaev, Intl J. Multiphase Flow 19, 589 (1993)

    Google Scholar 

  103. 103.

    J.E. Sprittles, Y.D. Shikhmurzaev, J. Comput. Phys. 233, 34 (2013)

    ADS  MathSciNet  Google Scholar 

  104. 104.

    J.E. Sprittles, Y.D. Shikhmurzaev, J. Comput. Phys. 274, 936 (2014)

    ADS  MathSciNet  Google Scholar 

  105. 105.

    A.M. Schwartz, C.A. Rader, E. Huey, inContact Angle, Wettability and Adhesion, edited by R.F. Gould (ACS, Washington, DC, 1964), pp. 250–267

  106. 106.

    A. Clarke, Chem. Eng. Sci. 50, 2397 (1995)

    Google Scholar 

  107. 107.

    Q. Chen, E. Ramé, S. Garoff, Colloids Surf. 116, 115 (1996)

    Google Scholar 

  108. 108.

    T.D. Blake, J.-C. Fernandez-Toledano, G. Doyen, J. De Coninck, Phys. Fluids 27, 012101 (2015)

    Google Scholar 

  109. 109.

    A.V. Lukyanov, Y.D. Shikhmurzaev, Phys. Lett. A 358, 426 (2006)

    ADS  Google Scholar 

  110. 110.

    A.V. Lukyanov, Y.D. Shikhmurzaev, Phys. Rev. E 75, 051604 (2007)

    ADS  Google Scholar 

  111. 111.

    J.E. Sprittles, Y.D. Shikhmurzaev, Phys. Fluids 24, 122105 (2012)

    ADS  Google Scholar 

  112. 112.

    J.E. Sprittles, Y.D. Shikhmurzaev, J. Fluid Mech. 751, 480 (2014)

    ADS  MathSciNet  Google Scholar 

  113. 113.

    Y.D. Shikhmurzaev, IMA J. Appl. Math. 70, 880 (2005)

    ADS  MathSciNet  Google Scholar 

  114. 114.

    Y. Li, J.E. Sprittles, J. Fluid Mech. 797, 29 (2016)

    ADS  MathSciNet  Google Scholar 

  115. 115.

    Y.D. Shikhmurzaev, C. R. Mecanique 333, 205 (2005)

    ADS  Google Scholar 

  116. 116.

    Y.D. Shikhmurzaev, Intl Polym. Process. 22, 38 (2007)

    Google Scholar 

  117. 117.

    D.D. Joseph, J. Nelson, M. Renardy, Y. Renardy, J. Fluid Mech. 223, 383 (1991)

    ADS  Google Scholar 

  118. 118.

    J.-T. Jeong, H.K. Moffatt, J. Fluid Mech. 241, 1 (1992)

    ADS  MathSciNet  Google Scholar 

  119. 119.

    Y.D. Shikhmurzaev, Phys. Lett. A 345, 378 (2005)

    ADS  Google Scholar 

  120. 120.

    M. Griebel, M. Klitz, Comput. & Math. with Appl. 78, 3027 (2019)

    MathSciNet  Google Scholar 

  121. 121.

    J.E. Sprittles, Y.D. Shikhmurzaev, Phys. Fluids 24, 082001 (2012)

    ADS  Google Scholar 

  122. 122.

    Y.D. Shikhmurzaev, J. Phys.: Condens. Matter 14, 319 (2002)

    ADS  Google Scholar 

  123. 123.

    Y.D. Shikhmurzaev, AIChE J. 42, 601 (1997)

    Google Scholar 

  124. 124.

    J.E. Sprittles, Y.D. Shikhmurzaev, Phys. Rev. E 76, 021602 (2007)

    ADS  Google Scholar 

  125. 125.

    J.E. Sprittles, Y.D. Shikhmurzaev, Eur. Phys. J. Special Topics 166, 159 (2009)

    ADS  Google Scholar 

  126. 126.

    Y. Kusaka, Anal. Math. Phys. 5, 67 (2015)

    MathSciNet  Google Scholar 

  127. 127.

    Y. Kusaka, Anal. Math. Phys. 6, 109 (2016)

    MathSciNet  Google Scholar 

  128. 128.

    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)

    Google Scholar 

  129. 129.

    R.N. Wenzel, J. Phys. Colloid Chem. 53, 1466 (1949)

    Google Scholar 

  130. 130.

    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Google Scholar 

  131. 131.

    V.R. Gray, Chem. Ind. 23, 969 (1965)

    Google Scholar 

  132. 132.

    G. Wolansky, A. Marmur, Colloid Surf. A 156, 381 (1999)

    Google Scholar 

  133. 133.

    L. Gao, T.J. McCarthy, Langmuir 23, 3762 (2007)

    Google Scholar 

  134. 134.

    T.S. Meiron, A. Marmur, I.S. Saguy, J. Colloid Interface Sci. 274, 637 (2004)

    ADS  Google Scholar 

  135. 135.

    D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008)

    ADS  Google Scholar 

  136. 136.

    S. Richardson, J. Fluid Mech. 59, 707 (1973)

    ADS  Google Scholar 

  137. 137.

    G.S. Beavers, D.D. Joseph, J. Fluid Mech. 30, 197 (1967)

    ADS  Google Scholar 

  138. 138.

    P.G. Saffman, Stud. Appl. Maths 50, 93 (1971)

    Google Scholar 

  139. 139.

    I.P. Jones, Proc. Cambridge Philos. Soc. 73, 231 (1973)

    ADS  Google Scholar 

  140. 140.

    A.I. Murdoch, A. Soliman, Proc. R. Soc. (London) A 455, 1315 (1999)

    ADS  Google Scholar 

  141. 141.

    D.A. Nield, Transp. Porous Media 78, 537 (2009)

    Google Scholar 

  142. 142.

    J.-L. Auriault, Transp. Porous Media 83, 257 (2010)

    Google Scholar 

  143. 143.

    Y. Jiang, Y. Sun, J.W. Drelich, C.-H. Choi, Langmuir 34, 4945 (2018)

    Google Scholar 

  144. 144.

    Y.D. Shikhmurzaev, J.E. Sprittles, J. Fluid Mech. 715, 273 (2013)

    ADS  MathSciNet  Google Scholar 

  145. 145.

    G.R. Lester, J. Colloid Sci. 16, 315 (1961)

    Google Scholar 

  146. 146.

    A.I. Rusanov, Colloid J. USSR 37, 614 (1975)

    ADS  Google Scholar 

  147. 147.

    B.V. Deryagin, V.M. Starov, N.V. Churaev, Colloid J. USSR 44, 770 (1982)

    Google Scholar 

  148. 148.

    M.E.R. Shanahan, P.-G. de Gennes, C. R. Acad. Paris 2, 517 (1986)

    Google Scholar 

  149. 149.

    M.E.R. Shanahan, J. Phys. D : Appl. Phys. 20, 945 (1987)

    ADS  Google Scholar 

  150. 150.

    A. Hirsch, L. Dejace, H.O. Michaud, S.P. Lacour, Acc. Chem. Res. 52, 534 (2019)

    Google Scholar 

  151. 151.

    R.A. Samy, A.K. Sen, J. Micromech. Microeng. 29, 065001 (2019)

    ADS  Google Scholar 

  152. 152.

    A. Leh, H.E. N’guessan, J. Fan, P. Bahadur, R. Tadmor, Y. Zhao, Langmuir 28, 5795 (2012)

    Google Scholar 

  153. 153.

    B. Andreotti, J. Snoeijer, Europhys. Lett. 113, 66001 (2016)

    ADS  Google Scholar 

  154. 154.

    R. Pericet-Camara, G.R. Auernhammer, K. Koynov, S. Lorenzoni, R. Raiteri, E. Bonaccurso, Soft Matter 5, 3611 (2009)

    ADS  Google Scholar 

  155. 155.

    G. Pu, J.H. Guo, L.E. Gwin, S.J. Severtson, Langmuir 23, 12142 (2007)

    Google Scholar 

  156. 156.

    A. Carre, M.E.R. Shanahan, Langmuir 11, 24 (1995)

    Google Scholar 

  157. 157.

    A. Carre, J.C. Gastel, M.E.R. Shanahan, Nature 379, 432 (1996)

    ADS  Google Scholar 

  158. 158.

    S. Schiaffino, A.A. Sonin, Phys. Fluids 9, 2217 (1997)

    ADS  Google Scholar 

  159. 159.

    F. Tavakoli, S.H. Davis, H.P. Kavehpour, Langmuir 30, 10151 (2014)

    Google Scholar 

  160. 160.

    R. de Ruiter, P. Colinet, P. Brunet, J.H. Snoeijer, H. Gelderblom, Phys. Rev. Fluids 2, 043602 (2017)

    ADS  Google Scholar 

  161. 161.

    R. Herbaut, P. Brunet, L. Limat, L. Royon, Phys. Rev. Fluids 4, 033603 (2019) 033603.

    ADS  Google Scholar 

  162. 162.

    S. Schiaffino, A.A. Sonin, Phys. Fluids 9, 2227 (1997)

    ADS  Google Scholar 

  163. 163.

    V. Thiévenaz, T. Séon, C. Josserand, J. Fluid Mech. 874, 756 (2019)

    ADS  MathSciNet  Google Scholar 

  164. 164.

    F.G. Yost, P.A. Sackenger, E.J. O’Toole, Acta Mater. 46, 2329 (1998)

    Google Scholar 

  165. 165.

    J.A. Warren, W.J. Boettinger, A. Roosen, Acta Mater. 46, 3247 (1998)

    Google Scholar 

  166. 166.

    W. Villanueva, K. Grönbagen, G. Amberg, J. Agren, Phys. Rev. E 77, 056313 (2008)

    ADS  Google Scholar 

  167. 167.

    W. Villanueva, W.J. Boettinger, J.A. Warren, G. Amberg, Acta Mater. 57, 6022 (2009)

    Google Scholar 

  168. 168.

    T.J. Singler, S. Su, L. Yin, B.T. Murray, J. Mater. Sci. 47, 8261 (2012)

    ADS  Google Scholar 

  169. 169.

    A. Rednikov, P. Colinet, Phys. Rev. E 87, 010401 (2013)

    ADS  Google Scholar 

  170. 170.

    V. Janeček, F. Doumenc, B. Gourrier, V.S. Nikolayev, J. Colloid Interface Sci. 460, 329 (2015)

    ADS  Google Scholar 

  171. 171.

    X. Xu, T. Qian, Phys. Rev. E 85, 061603 (2012)

    ADS  Google Scholar 

  172. 172.

    P.-G. deGennes, C. R. Acad. Sci. Paris 297, 9 (1983)

    Google Scholar 

  173. 173.

    H. Hervet, P.-G. de Gennes, C. R. Acad. Sci. Paris 299, 499 (1984)

    Google Scholar 

  174. 174.

    T.D. Blake, Y.D. Shikhmurzaev, J. Colloid Interface Sci. 253, 196 (2002)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulii D. Shikhmurzaev.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shikhmurzaev, Y.D. Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges. Eur. Phys. J. Spec. Top. 229, 1945–1977 (2020). https://doi.org/10.1140/epjst/e2020-900236-8

Download citation