Gradient dynamics model for drops spreading on polymer brushes

Abstract

When a liquid drop spreads on an adaptive substrate the latter changes its properties what may result in an intricate coupled dynamics of drop and substrate. Here we present a generic mesoscale hydrodynamic model for such processes that is written as a gradient dynamics on an underlying energy functional. We specify the model details for the example of a drop spreading on a dry polymer brush. There, liquid absorption into the brush results in swelling of the brush causing changes in the brush topography and wettability. The liquid may also advance within the brush via diffusion (or wicking) resulting in coupled drop and brush dynamics. The specific model accounts for coupled spreading, absorption and wicking dynamics when the underlying energy functional incorporates capillarity, wettability and brush energy. After employing a simple version of such a model to numerically simulate a droplet spreading on a swelling brush we conclude with a discussion of possible model extensions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.G. de Gennes, F. Brochard-Wyart, D. Quéré,Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer, New York, 2004)

  2. 2.

    S. Kalliadasis, U. Thiele, eds.,Thin films of soft matter (Springer, Wien, 2007)

  3. 3.

    V.M. Starov, M.G. Velarde, C.J. Radke,Wetting and spreading dynamics (Taylor and Francis, Boca Raton, 2007)

  4. 4.

    E. Bormashenko,Physics of wetting: phenomena and applications of fluids on surfaces, De Gruyter Textbook (De Gruyter, 2017)

  5. 5.

    U. Thiele, L. Brusch, M. Bestehorn, M. Bär, Eur. Phys. J. E 11, 255 (2003)

    Google Scholar 

  6. 6.

    S. Herminghaus, M. Brinkmann, R. Seemann, Ann. Rev. Mater. Res. 38, 101 (2008)

    ADS  Google Scholar 

  7. 7.

    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)

    ADS  Google Scholar 

  8. 8.

    G. Mistura, M. Pierno, Adv. Phys. X 2, 591 (2017)

    Google Scholar 

  9. 9.

    S. Bommer, F. Cartellier, S. Jachalski, D. Peschka, R. Seemann, B. Wagner, Eur. Phys. J. E 36, 87 (2013)

    Google Scholar 

  10. 10.

    L. Lubbers, J. Weijs, L. Botto, S. Das, B. Andreotti, J. Snoeijer, J. Fluid Mech. 747, R1 (2014)

    ADS  Google Scholar 

  11. 11.

    R. Pericet-Camara, G. Auernhammer, K. Koynov, S. Lorenzoni, R. Raiteri, E. Bonaccurso, Soft Matter 5, 3611 (2009)

    ADS  Google Scholar 

  12. 12.

    R. Style, E. Dufresne, Soft Matter 8, 7177 (2012)

    ADS  Google Scholar 

  13. 13.

    B. Andreotti, J.H. Snoeijer, Ann. Rev. Fluid Mech. 52, 285 (2020)

    ADS  Google Scholar 

  14. 14.

    F. Guo, Z. Guo, RSC Adv. 6, 36623 (2016)

    Google Scholar 

  15. 15.

    M.A. Cohen-Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban et al., Nat. Mater. 9, 101 (2010)

    ADS  Google Scholar 

  16. 16.

    K. Manabe, T. Matsubayashi, M. Tenjimbayashi, T. Moriya, Y. Tsuge, K. Kyung, S. Shiratori, ACS Nano 10, 9387 (2016)

    Google Scholar 

  17. 17.

    L. Chen, M.J. Liu, L. Lin, T. Zhang, J. Ma, Y.L. Song, L. Jiang, Soft Matter 6, 2708 (2010)

    ADS  Google Scholar 

  18. 18.

    Y. Stetsyshyn, J. Raczkowska, O. Lishchynskyi, A. Bernasik, A. Kostruba, K. Harhay, H. Ohar, M.M. Marzec, A. Budkowski, ACS Appl. Mater. Interfaces 9, 12035 (2017)

    Google Scholar 

  19. 19.

    K.D. Pangilinan, A.C. Leon, J.D. Mangadlao, E. Baer, R.C. Advincula, Macromol. Mater. Eng. 301, 870 (2016)

    Google Scholar 

  20. 20.

    S. Karpitschka, F. Liebig, H. Riegler, Langmuir 31, 4682 (2017)

    Google Scholar 

  21. 21.

    X. Yu, Z. Wang, Y. Jiang, F. Shi, X. Zhang, Adv. Mater. 17, 1289 (2005)

    Google Scholar 

  22. 22.

    L. Zhang, Z. Zhang, P. Wang, NPG Asia Mater. 4, e8 (2012)

    Google Scholar 

  23. 23.

    Y. Stetsyshyn, J. Zemla, O. Zolobko, K. Fornal, A. Budkowski, A. Kostruba, V. Donchak, K. Harhay, K. Awsiuk, J. Rysz et al., J. Colloid Interface Sci. 387, 95 (2012)

    ADS  Google Scholar 

  24. 24.

    M. Cheng, Q. Liu, G. Ju, Y. Zhang, L. Jiang, F. Shi, Adv. Mater. 26, 306 (2014)

    Google Scholar 

  25. 25.

    H.J. Butt, R. Berger, W. Steffen, D. Vollmer, S.A.L. Weber, Langmuir 34, 11292 (2018)

    Google Scholar 

  26. 26.

    K. Hänni-Ciunel, G. Findenegg, R. von Klitzing, Soft Mater. 5, 61 (2007)

    Google Scholar 

  27. 27.

    H. Yong, S. Rauch, K. Eichhorn, P. Uhlmann, A. Fery, J. Sommer, Materials 11, 991 (2018)

    ADS  Google Scholar 

  28. 28.

    S. Backes, P. Krause, W. Tabaka, M. Witt, D. Mukherji, K. Kremer, R. von Klitzing, ACS Macro Lett. 6, 1042 (2017)

    Google Scholar 

  29. 29.

    S. Backes, P. Krause, W. Tabaka, M. Witt, R. von Klitzing, Langmuir 33, 14269 (2017)

    Google Scholar 

  30. 30.

    C. Tonhauser, A. Golriz, C. Moers, R. Klein, H. Butt, H. Frey, Adv. Mater. 24, 5559 (2012)

    Google Scholar 

  31. 31.

    S. Minko, M. Müller, M. Motornov, M. Nitschke, K. Grundke, M. Stamm, J. Am. Chem. Soc. 125, 3896 (2003)

    Google Scholar 

  32. 32.

    J. De Coninck, T.D. Blake, Ann. Rev. Mater. Res. 38, 1 (2008)

    ADS  Google Scholar 

  33. 33.

    F. Leonforte, J. Servantie, C. Pastorino, M. Müller, J. Phys.: Condens. Matter 23, 184105 (2011)

    ADS  Google Scholar 

  34. 34.

    F. Dorfler, M. Rauscher, J. Koplik, J. Harting, S. Dietrich, Soft Matter 8, 9221 (2012)

    ADS  Google Scholar 

  35. 35.

    P. Yue, J. Feng, Eur. Phys. J. Special Topics 197, 37 (2011)

    ADS  Google Scholar 

  36. 36.

    K. Mahady, S. Afkhami, J. Diez, L. Kondic, Phys. Fluids 25, 112103 (2013)

    ADS  Google Scholar 

  37. 37.

    K. Mahady, S. Afkhami, L. Kondic, Phys. Fluids 28, 062002 (2016)

    ADS  Google Scholar 

  38. 38.

    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    ADS  Google Scholar 

  39. 39.

    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)

    ADS  Google Scholar 

  40. 40.

    N. Tretyakov, M. Müller, D. Todorova, U. Thiele, J. Chem. Phys. 138, 064905 (2013)

    ADS  Google Scholar 

  41. 41.

    D. Sibley, A. Nold, N. Savva, S. Kalliadasis, J. Eng. Math. 94, 19 (2015)

    Google Scholar 

  42. 42.

    A. von Borries Lopes, U. Thiele, A. Hazel, J. Fluid Mech. 835, 540 (2018)

    ADS  MathSciNet  Google Scholar 

  43. 43.

    D. Long, A. Ajdari, L. Leibler, Langmuir 12, 1675 (1996)

    Google Scholar 

  44. 44.

    F. Leonforte, M. Müller, J. Chem. Phys. 135, 214703 (2011)

    ADS  Google Scholar 

  45. 45.

    L. Mensink, J. Snoeijer, S. de Beer, Macromolecules 52, 2015 (2019)

    ADS  Google Scholar 

  46. 46.

    U. Thiele, inThin films of soft matter, edited by S. Kalliadasis, U. Thiele (Springer Vienna, Vienna, 2007), pp. 25–93

  47. 47.

    V.S. Mitlin, J. Colloid Interface Sci. 156, 491 (1993)

    ADS  Google Scholar 

  48. 48.

    S. Engelnkemper, S. Gurevich, H. Uecker, D. Wetzel, U. Thiele, inComputational modeling of bifurcations and instabilities in fluid mechanics, edited by A. Gelfgat (Springer, 2019), Computat. Methods Appl. Sci. 50, 459

  49. 49.

    N.V. Churaev, Adv. Colloid Interface Sci. 58, 87 (1995)

    Google Scholar 

  50. 50.

    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  Google Scholar 

  51. 51.

    G.F. Teletzke, H.T. Davis, L.E. Scriven, Rev. Phys. Appl. (Paris) 23, 989 (1988)

    Google Scholar 

  52. 52.

    V.M. Starov, M.G. Velarde, J. Phys.: Condens. Matter 21, 464121 (2009)

    ADS  Google Scholar 

  53. 53.

    M.G. Velarde (ed.), Eur. Phys. J. Special Topics 197 (2011)

  54. 54.

    A. Münch, B. Wagner, T.P. Witelski, J. Eng. Math. 53, 359 (2005)

    Google Scholar 

  55. 55.

    M. Popescu, G. Oshanin, S. Dietrich, A. Cazabat, J. Phys.: Condens. Matter 24, 243102 (2012)

    ADS  Google Scholar 

  56. 56.

    O.K. Matar, R.V. Craster, Soft Matter 5, 3801 (2009)

    ADS  Google Scholar 

  57. 57.

    L.Ó. Náraigh, J.L. Thiffeault, Nonlinearity 23, 1559 (2010)

    ADS  MathSciNet  Google Scholar 

  58. 58.

    S. Karpitschka, H. Riegler, J. Fluid Mech. 743, R1 (2014)

    ADS  Google Scholar 

  59. 59.

    U. Thiele, Colloid Surf. A 553, 487 (2018)

    Google Scholar 

  60. 60.

    U. Thiele, D.V. Todorova, H. Lopez, Phys. Rev. Lett. 111, 117801 (2013)

    ADS  Google Scholar 

  61. 61.

    U. Thiele, A. Archer, L. Pismen, Phys. Rev. Fluids 1, 083903 (2016)

    ADS  Google Scholar 

  62. 62.

    U. Thiele, J. Snoeijer, S. Trinschek, K. John, Langmuir 34, 7210 (2018)

    Google Scholar 

  63. 63.

    P. De Gennes, C. R. Acad. Sci. II 313, 1117 (1991)

    Google Scholar 

  64. 64.

    S. Alexander, J. Phys. Paris 38, 983 (1977)

    Google Scholar 

  65. 65.

    J. Sommer, Macromolecules 50, 2219 (2017)

    ADS  Google Scholar 

  66. 66.

    M. Heil, A.L. Hazel, inFluid–structure interaction: modelling, simulation, optimisation, edited by H.J. Bungartz, M. Schäfer (Springer, Berlin, Heidelberg, 2006), pp. 19–49

  67. 67.

    U. Thiele, B. Goyeau, M.G. Velarde, Phys. Fluids 21, 014103 (2009)

    ADS  Google Scholar 

  68. 68.

    T. Gambaryan-Roisman, Curr. Opin. Colloid Interface Sci. 19, 320 (2014)

    Google Scholar 

  69. 69.

    P.A. Gauglitz, C.J. Radke, Chem. Eng. Sci. 43, 1457 (1988)

    Google Scholar 

  70. 70.

    J. Snoeijer, B. Andreotti, G. Delon, M. Fermigier, J. Fluid Mech. 579, 63 (2007)

    ADS  MathSciNet  Google Scholar 

  71. 71.

    A.V. Lyushnin, A.A. Golovin, L.M. Pismen, Phys. Rev. E 65, 021602 (2002)

    ADS  MathSciNet  Google Scholar 

  72. 72.

    U. Thiele, J. Phys.: Condens. Matter 22, 084019 (2010)

    ADS  Google Scholar 

  73. 73.

    S. Engelnkemper, U. Thiele, Europhys. Lett. 127, 54002 (2019)

    ADS  Google Scholar 

  74. 74.

    U. Thiele, Adv. Colloid Interface Sci. 206, 399 (2014)

    Google Scholar 

  75. 75.

    H. Yong, E. Bittrich, P. Uhlmann, A. Fery, J. Sommer, Macromolecules 52, 6285 (2019)

    ADS  Google Scholar 

  76. 76.

    M. Banaha, A. Daerr, L. Limat, Eur. Phys. J. Special Topics 166, 185 (2009)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Uwe Thiele or Simon Hartmann.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thiele, U., Hartmann, S. Gradient dynamics model for drops spreading on polymer brushes. Eur. Phys. J. Spec. Top. 229, 1819–1832 (2020). https://doi.org/10.1140/epjst/e2020-900231-2

Download citation