Skip to main content
Log in

Antimonotonicity, coexisting attractors and bursting oscillations in optomechanical system: Analysis and electronic implementation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper studies the dynamical behavior of an optomechanical system operating in red-detuned. It is shown that this optomechanical system can exibit antimonotonicity, coexisting attractors, periodic and chaotic bubble behaviors for specific choice of the parameters. In the resolved sideband regime and when the time scale of the mechanical oscillations is larger enough than the time scale of the cavity field, this optomechanical system displays Hopf birfucation which tiggers bursting oscillations. These bursting oscillations cover the range of periodic to chaotic oscillations and are located between the optical bistability and the optical multi sidebands regimes. The numerical simulation results are confirmed with analog simulations using an electronic implementation. The possibility to experimentally capture bursting oscillations through their specific spectrum is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  2. A.D. O’Connell, et al., Nature 464, 697 (2010)

    ADS  Google Scholar 

  3. J.D. Teufel, et al., Nature 475, 359 (2011)

    ADS  Google Scholar 

  4. A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M.T. Rakher, P. Treutlein, Nat. Nanotechnol. 10, 55 (2015)

    ADS  Google Scholar 

  5. E.E. Wollman, C.U. Lei, A.J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A.A. Clerk, K.C. Schwab, Science 349, 952 (2015)

    ADS  MathSciNet  Google Scholar 

  6. S. Forstner, J. Knittel, E. Sheridan, J.D. Swaim, H.R. Dunlop, W.P. Bowen, Photonic Sens. 2, 259 (2012)

    ADS  Google Scholar 

  7. B. Rogers, N. Lo Gullo, G. De Chiara, G.M. Palma, M. Paternostro, Quantum Meas. Quantum Metrol. 2, 11 (2014)

    ADS  Google Scholar 

  8. S. Rips, M.J. Hartmann, Phys. Rev. Lett. 110, 120503 (2013)

    ADS  Google Scholar 

  9. A.G. Krause, J.T. Hill, M. Ludwig, A.H. Safavi-Naeini, J. Chan, F. Marquardt, O. Painter, Phys. Rev. Lett. 115, 233601 (2015)

    ADS  Google Scholar 

  10. I.M. Mirza, Opt. Lett. 41, 2422 (2016)

    ADS  Google Scholar 

  11. M.A. Lemonde, N. Didier, A.A. Clerk, Nat. Commun. 7, 11338 (2016)

    ADS  Google Scholar 

  12. P. Djorwe, S.G. Nana Engo, J.H. Talla Mbe, P. Woafo, Physica B 422, 72 (2013)

    ADS  Google Scholar 

  13. P. Djorwe, S.G. Nana Engo, P. Woafo, Phys. Rev. A 90, 024303 (2014)

    ADS  Google Scholar 

  14. T. Carmon, M.C. Cross, K.J. Vahala, Phys. Rev. Lett. 98, 167203 (2007)

    ADS  Google Scholar 

  15. L. Bakemeier, A. Alvermann, H. Fehske, Phys. Rev. Lett. 114, 013601 (2015)

    ADS  Google Scholar 

  16. F. Marino, F. Marin, Phys. Rev. E 83, 015202(R) (2011)

    ADS  Google Scholar 

  17. F. Marino, F. Marin, Phys. Rev. E 87, 052906 (2013)

    ADS  Google Scholar 

  18. M. Descroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H.M. Osinga, M. Wechselberger, SIAM Rev. 54, 211 (2012)

    MathSciNet  Google Scholar 

  19. C. Morris, H. Lecar, Biophys. J. 35, 193 (1981)

    ADS  Google Scholar 

  20. N. Lörch, J. Qian, A. Clerk, F. Marquardt, K. Hammerer, Phys. Rev. X 4, 011015 (2015)

    Google Scholar 

  21. S. Aldana, C. Bruder, A. Nunnenkamp, Phys. Rev. A 88, 043826 (2013)

    ADS  Google Scholar 

  22. S.T. Fleischmann, J.M. Wallace, AIAA J. 22, 766 (1984)

    ADS  Google Scholar 

  23. J.M. López, J.E. Hart, F. Marques, S. Kittelman, J. Shen, J. Fluid Mech. 462, 383 (2002)

    ADS  MathSciNet  Google Scholar 

  24. E. Ott, T.M. Antonsen, D.P. Lathrop, J.M. Finn, Phys. Plasmas 8, 1944 (2001)

    ADS  Google Scholar 

  25. T. Ozeki, Plasma Phys. Control Fusion 45, 645 (2003)

    ADS  Google Scholar 

  26. R.A. Ong, Phys. Rep. 305, 93 (1998)

    ADS  Google Scholar 

  27. N.F. Rulkov, Phys. Rev. E 65, 041922 (2002)

    ADS  MathSciNet  Google Scholar 

  28. J. Keener, J. Sneyd, Mathematical physiology (Springer, New York, 1998)

  29. C.Y. Kouomou, P. Colet, L. Larger, N. Gastaud, Phys. Rev. Lett. 95, 203903 (2005)

    ADS  Google Scholar 

  30. S.T. Kingni, L. Keuninckx, P. Woafo, G. Van der Sande, J. Danckaert, Nonlinear Dyn. 73, 1111 (2013)

    Google Scholar 

  31. L.T. Abobda, P. Woafo, Nonlinear Dyn. 17, 3082 (2012)

    Google Scholar 

  32. P. Gray, G. Nicolis, F. Baras, P. Borckmans, S.K. Scott, Spatial inhomogeneities and transient behaviour in chemical kinetics (Wiley, New York, 1992)

  33. S.P. Dawson, C. Grebogi, I. Kan, H. Kocak, J.A. Yorke, Phys. Lett. A 162, 249 (1992)

    ADS  MathSciNet  Google Scholar 

  34. S.P. Dawson, C. Grebogi, H. Kocak, Phys. Rev. E 48, 1676 (1993)

    ADS  MathSciNet  Google Scholar 

  35. I.M. Kyprianidis, I.N. Stouboulos, P. Haralabidis, Int. J. Bifurc. Chaos 10, 1903 (2000)

    Google Scholar 

  36. M. Bier, T.C. Boutis, Phys. Lett. A 104, 239 (1984)

    ADS  MathSciNet  Google Scholar 

  37. T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, P.M. Alsing, Phys. Rev. A 51, 4181 (1995)

    ADS  Google Scholar 

  38. K. Coffman, W.D. McCormick, H.L. Swinney, Phys. Rev. Lett. 56, 999 (1986)

    ADS  Google Scholar 

  39. U. Parlitz, W. Lauterborn, Phys. Rev. A 26, 1428 (1987)

    ADS  Google Scholar 

  40. A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)

    ADS  MathSciNet  Google Scholar 

  41. J. Kengne, Z.T. Njitacke, A. Nguomkam Negou, M. Fouodji Tsotsop, H.B. Fotsin, Int. J. Bifurc. Chaos 26, 1650081 (2015)

    Google Scholar 

  42. C. Ainamon, S.T. Kingni, V.K. Tamba, J.B. Chabi Orou, P. Woafo, Eur. Phys. J. B 30, 501 (2019)

    Google Scholar 

  43. Z. Wei, I. Moroz, J.C. Sprott, Z. Wang, W. Zhang, Int. J. Bifurc. Chaos 27, 1730008 (2017)

    Google Scholar 

  44. Z. Wei, P. Yu, W. Zhang, M. Yao, Nonlinear Dyn. 82, 131 (2015)

    Google Scholar 

  45. Z. Wei, B. Zhu, J. Yang, M. Perc, M. Slavinec, Appl. Math. Comput. 347, 265 (2019)

    MathSciNet  Google Scholar 

  46. M. Borah, J. Comput. Nonlinear Dyn. 13, 090906 (2018)

    Google Scholar 

  47. J.P. Singh, B.K. Roy, N.V. Kuznetsov, Int. J. Bifurc. Chaos 29, 1950056 (2019)

    Google Scholar 

  48. Z. Wei, I. Moroz, J.C. Sprott, A. Akgul, W. Zhang, Chaos 27, 033101 (2017)

    ADS  MathSciNet  Google Scholar 

  49. Z. Wei, V.T. Pham, T. Kapitaniak, Z. Wang, Nonlinear Dyn. 85, 1635 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sifeu Takougang Kingni.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingni, S.T., Tchodimou, C., Platou Foulla, D. et al. Antimonotonicity, coexisting attractors and bursting oscillations in optomechanical system: Analysis and electronic implementation. Eur. Phys. J. Spec. Top. 229, 1117–1132 (2020). https://doi.org/10.1140/epjst/e2020-900178-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900178-0

Navigation