Skip to main content
Log in

Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, an integer- and fractional-order form of a four-dimensional (4-D) chaotic system with hidden attractors is investigated using theoretical/numerical and analogue methods. The system is constructed not through the extension of a three-dimensional existing nonlinear system as in current approaches, but by modifying the well-known two-dimensional Lotka-Volterra system. The equilibrium point of the integer-order system is determined and its stability analysis is studied using Routh-Hurwitz criterion. When the selected bifurcation parameter is varied, the system exhibits various dynamical behaviors and features including intermittency route to chaos, chaotic bursting oscillations and offset boosting. Moreover, the fractional-order form of the system is examined through bifurcation analysis. It is revealed that chaotic behaviors still exist in the system with order less than four. To validate the numerical approaches, a corresponding electronic circuit for the model in its integer and fractional order form is designed and implemented in Orcard-Pspice software. The Pspice results are consistent with those from the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gaspard, Physica A 263, 315 (1999)

    Article  ADS  Google Scholar 

  2. M. Kyriazis, Exp. Gerontology 26, 569 (1991)

    Article  Google Scholar 

  3. J.C. Sprott, J.A. Vano, J.C. Wildenberg, M.B. Anderson, J.K. Noel, Phys. Lett. A 335, 207(2005)

    Article  ADS  Google Scholar 

  4. K. Aihira, T. Takabe, M. Toyoda, Phys. Lett. A 144, 333 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Lankalapalli, A. Ghosal, Int. J. Bifurc. Chaos 7, 707 (1997)

    Article  Google Scholar 

  6. H.T. Yau, C.S. Shieh, Nonlinear Anal.: Real World Appl. 9, 1800 (2008)

    Article  MathSciNet  Google Scholar 

  7. A.E. Matouk, H.N. Agiza, J. Math. Anal. Appl. 341, 259 (2008)

    Article  MathSciNet  Google Scholar 

  8. T.I. Chien, T.L. Liao, Chaos Solitons Fractals 24, 241 (2005)

    Article  ADS  Google Scholar 

  9. Q. Guoyuan, C. Guanrong, Phys. Lett. A 352, 386 (2006)

    Article  Google Scholar 

  10. S. Bouali, Nonlinear Dyn. 70, 2375 (2012)

    Article  Google Scholar 

  11. V.T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, Eur. Phys. J. Special Topics 224, 1507. (2015)

    Article  ADS  Google Scholar 

  12. S. Bouali, Ann. Rev. Chaos Theory Bifurcations Dyn. Syst. 6, 48 (2016)

    Google Scholar 

  13. S. Jafari, J.C. Sprott, Chaos Solitons Fractals 57, 79 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. V.T. Pham, S. Jafari, C. Volos, T. Kapitaniak, Chaos Solitons Fractals 93, 58 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. X. Wang, G. Chen, Nonlinear Dyn. 71, 429 (2013)

    Article  Google Scholar 

  16. V.T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, S.T. Kingni, Optik 127, 3259 (2016)

    Article  ADS  Google Scholar 

  17. V.T. Pham, S. Jafari, X. Wang, J. Ma, Int. J. Bifurc. Chaos 26, 1650069 (2016)

    Article  Google Scholar 

  18. A. Bayani, K. Rajagopal, A.J.M. Khalaf, S. Jafari, G.D. Leutcho, J. Kengne, Phys. Lett. A 383, 1450 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes (Cambridge University Press, 1992)

  20. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Wastano, Physica D 16, 285 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. V.T. Pham, C. Volos, S. Jafari, X. Wang, S. Vaidyanathan, Optoelectron. Adv. Mater. Rapid Commun. 8, 1 (2014)

    Google Scholar 

  22. A.L. Fitch, D. Yu, H.H.C. Iu, V. Sreeram, Int. J. Bifurc. Chaos 22, 1250133 (2012)

    Article  Google Scholar 

  23. C. Li, J.C. Sprott, Nonlinear Dyn. 73, 1335 (2013)

    Article  Google Scholar 

  24. C. Li, J.C. Sprott, Optik 27, 10389 (2016)

    Article  Google Scholar 

  25. V. Kamdoum Tamba, R. Karthikeyan, V.T. Pham, D.V. Hoang, Adv. Math. Phys.

  26. A. Schmidt, L. Gaul, Nonlinear Dyn. 29, 37 (2002)

    Article  Google Scholar 

  27. I. Schafer, K. Kruger, J. Phys. D 41, 1 (2008)

    Google Scholar 

  28. S. Faraji, M.S. Tavazoei, Cent. Eur. J. Phys. 11, 836 (2013)

    Google Scholar 

  29. G.S. Mbouna Ngueuteu, P. Woafo, Mech. Res. Commun. 46, 20 (2012)

    Article  Google Scholar 

  30. I.S. Jesus, J.A.T. Machado, Nonlinear Dyn. 56, 45 (2009)

    Article  Google Scholar 

  31. R. Karthikeyan, N. Fahimeh, J. Sajad, K. Anitha, Eur. Phys. J. Special Topics 226, 3827 (2017)

    Article  Google Scholar 

  32. X. Wang, S. Takougang Kingni, C. Volos, V.T. Pham, D.V. Hoang, S. Jafari, Int. J. Electron. 106, 109 (2018)

    Article  Google Scholar 

  33. B. Atiyeh, J. Mohammad Ali, R. Karthikeyan, J. Haibo, J. Sajad, Eur. Phys. J. Special Topics 226, 3729 (2017)

    Article  Google Scholar 

  34. R. Karthikeyan, N. Fahimeh, G. Laarem, K. Anitha, S. Ashokkumar, J. Sajad, J. Circuits Syst. Comput. (2019)

  35. I. Grigorenko, E. Grigorenko, Phys. Rev. Lett. 91, 034101 (2003)

    Article  ADS  Google Scholar 

  36. I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer, 2011)

  37. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, Calif, USA, 1999)

  38. C.F. Lorenzo, T.T. Hartley, Int. J. Appl. Math. 3, 249 (2000)

    MathSciNet  Google Scholar 

  39. C.F. Lorenzo, T.T. Hartley, Nonlinear Dyn. 29, 57 (2002)

    Article  Google Scholar 

  40. I. Podlubny, A.M.A. El-Sayed, On Two Definition of Fractional Calculus (Solvak Academy of science institute of Experimental Phys., 1996)

  41. A.M. Concepcion, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls (Springer, London, 2010)

  42. I. Podlubny, Fractional Differential Equations (NY, 1999).

  43. E. Zambrano-Serrano, E. Campos-Canton, J.M. Munoz-Pacheco, Nonlinear Dyn. 83, 1629 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Honoré Kom.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamba, V.K., Kom, G.H., Kingni, S.T. et al. Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors. Eur. Phys. J. Spec. Top. 229, 1211–1230 (2020). https://doi.org/10.1140/epjst/e2020-900169-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900169-1

Navigation