Skip to main content
Log in

Democratizing earthquake predictability research: introducing the RichterX platform

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Predictability of earthquakes has been vigorously debated in the last decades with the dominant -albeit contested -view being that earthquakes are inherently unpredictable. The absence of a framework to rigorously evaluate earthquake predictions has led to prediction efforts being viewed with scepticism. Consequently, funding for earthquake prediction has dried out and the community has shifted its focus towards earthquake forecasting. The field has benefited from collaborative efforts to organize prospective earthquake forecasting contests by introducing protocols, model formats and rigorous tests. However, these regulations have also created a barrier to entry. Methods that do not share the assumptions of the testing protocols, or whose outputs are not compatible with the contest format, can not be accommodated. In addition, the results of the contests are communicated via a suite of consistency and pair-wise tests that are often difficult to interpret for those not well versed in statistical inference. Due to these limiting factors, while scientific output in earthquake seismology has been on the rise, participation in such earthquake forecasting contests has remained rather limited. In order to revive earthquake predictability research and encourage wide-scale participation, here we introduce a global earthquake prediction platform by the name RichterX. The platform allows for testing of any earthquake prediction in a user-defined magnitude, space, time window anywhere on the globe. Predictions are assigned a reference probability based on a rigorously tested real-time global statistical earthquake forecasting model. In this way, we are able to accommodate methods issuing alarm based predictions as well as probabilistic earthquake forecasting models. We formulate two metrics to evaluate the participants’ predictive skill and demonstrate their consistency through synthetic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abdi, in Encyclopedia of Measurement and Statistics (Sage, Thousand Oaks, CA, 2007), pp. 508–510.

  2. C.R. Allen, Bull. Seismol. Soc. Am. 66, 2069 (1976)

    Google Scholar 

  3. P. Bird, D.D. Jackson, Y.Y. Kagan, C. Kreemer, R.S. Stein, Bull. Seismol. Soc. Am. 105, 2538 (2015)

    Article  Google Scholar 

  4. F. Cappa, J. Laut, M. Porfiri, L. Giustiniano, Comput. Human Behav. 89, 246 (2018)

    Article  Google Scholar 

  5. A. Chaia, A. Dalal, T. Goland, M.J. Gonzalez, J. Morduch, R. Schiff, Half the world is unbanked: financial access initiative framing note (Financial Access Initiative, New York, 2009)

  6. R. Console, M. Murru, F. Catalli, G. Falcone, Seismol. Res. Lett. 78, 49 (2007)

    Article  Google Scholar 

  7. G. Coppi, L. Fast, Blockchain and distributed ledger technologies in the humanitarian sector (Hpg commissioned report, London, 2019). http://hdl.handle.net/10419/193658

  8. M.A. Edwards, S. Roy, Academic research in the 21st Century: Maintaining scientific integrity in a climate of perverse incentives and hypercompetition (2017). https://www.liebertpub.com/doi/abs/10.1089/ees.2016.0223

  9. Erdstösse im Wallis, Zahlreiche Erdstösse schrecken Menschen im Wallis auf (2019). https://www.tagesanzeiger.ch/panorama/vermischtes/naechtliches-erdbeben-erschuettert-das-wallis/story/13668757

  10. A. Extance, Nature 526, 21 (2015)

    Article  ADS  Google Scholar 

  11. C. Fabian, Innov. Technol. Governance Globalization 12, 30 (2018)

    Article  Google Scholar 

  12. D. Fiorillo, Ann. Public Cooperative Econ. 82, 139 (2011)

    Article  Google Scholar 

  13. D. Fletcher, Model averaging (Springer, 2019)

  14. GEOFON, Deutsches GeoForschungszZntrum GFZ (1993)

  15. D. Harte, D. Vere-Jones, Pure Appl. Geophys. 162, 1229 (2005)

    Article  ADS  Google Scholar 

  16. D. Harte, D.F. Lp, M. Wreede, D. Vere-Jones, Q. Wang, New Zealand J. Geol. Geophys. 50, 117 (2007)

    Article  Google Scholar 

  17. S. Hiemer, Y. Kamer, Seismol. Res. Lett. 87, 327 (2016)

    Article  Google Scholar 

  18. D.D. Jackson, Proc. Nat. Acad. Sci. USA 93, 3772 (1996)

    Article  ADS  Google Scholar 

  19. I.T. Jolliffe, Meteorol. Appl. 15, 25 (2008)

    Article  ADS  Google Scholar 

  20. T.H. Jordan, Seismol. Res. Lett. 77, 3 (2006)

    Article  Google Scholar 

  21. Y.Y. Kagan, Worldwide Earthquake Forecasts (2017)

  22. Y.Y. Kagan, D.D. Jackson, Geophys. J. Int. 143, 438 (2000)

    Article  ADS  Google Scholar 

  23. Y.Y. Kagan, D.D. Jackson, R.J. Geller, Seismol. Res. Lett. 83, 951 (2012)

    Article  Google Scholar 

  24. Y. Kamer, S. Hiemer, J. Geophys. Res. Solid Earth 120, 5191 (2015)

    Article  ADS  Google Scholar 

  25. V.I. Keilis-Borok, V.G. Kossobokov, Phys. Earth Planet Inter. 61, 73 (1990)

    Article  ADS  Google Scholar 

  26. Y.M. Kow, First Monday 22 (2017)

  27. Y.-T.T. Lee, D.L. Turcotte, J.R. Holliday, M.K. Sachs, J.B. Rundle, C.-C.C. Chen, K.F. Tiampo, Proc. Nat. Acad. Sci. USA 108, 16533 (2011)

    Article  ADS  Google Scholar 

  28. M.R. Lepper, D. Greene, The hidden costs of reward: New perspectives on the psychology of human motivation (Lawrence Erlbaum, Oxford, England, 1978)

  29. A. Lomax, A. Michelini, Pure Appl. Geophy. 170, 1385 (2013)

    Article  ADS  Google Scholar 

  30. G. Molchan, L. Romashkova, [arXiv: http://arxiv.org/abs/1005.3175 1005.3175] (2010)

  31. G.M. Molchan, Phys. Earth Planet. Inter. 61, 84 (1990)

    Article  ADS  Google Scholar 

  32. G.M. Molchan, Tectonophysics 193, 267 (1991)

    Article  ADS  Google Scholar 

  33. S. Nandan, G. Ouillon, S. Wiemer, D. Sornette, J. Geophys. Res. Solid Earth 122, 5118 (2017)

    Article  ADS  Google Scholar 

  34. S. Nandan, G. Ouillon, D. Sornette, S. Wiemer, Seismol. Res. Lett. 90, 1650 (2019)

    Google Scholar 

  35. S. Nandan, G. Ouillon, D. Sornette, S. Wiemer, J. Geophys. Res. Solid Earth 124, 8404 (2019)

    Article  ADS  Google Scholar 

  36. S. Nandan, Y. Kamer, G. Ouillon, S. Hiemer, D. Sornette, Eur. Phys. J. Special Topics 230, 425 (2021)

    Google Scholar 

  37. C.G. Northcutt, A.D. Ho, I.L. Chuang, Comput. Edu. 100, 71 (2016)

    Article  Google Scholar 

  38. Y. Ogata, J. Am. Stat. Assoc. 83, 9 (1988)

    Article  Google Scholar 

  39. M. Pagani, J. Garcia, D. Monelli, G. Weatherill, A. Smolka, Ann. Geophys. 58 (2015). https://www.annalsofgeophysics.eu/index.php/annals/article/view/6677

  40. W. Savran, P. Maechling, M. Werner, D. Schorlemmer, D. Rhoades, W. Marzocchi, J. Yu, T. Jordan, The Collaboratory for the Study of Earthquake Predictability Version 2 (CSEP2): Testing Forecasts that Generate Synthetic Earthquake Catalogs (EGUGA, 2019), p. 12445

  41. D. Schorlemmer, J.D. Zechar, M.J. Werner, E.H. Field, D.D. Jackson, T.H. Jordan, Pure Appl. Geophys. 167, 859 (2010)

    Article  ADS  Google Scholar 

  42. D. Schorlemmer, M.J. Werner, W. Marzocchi, T.H. Jordan, Y. Ogata, D.D. Jackson, S. Mak, D.A. Rhoades, M.C. Gerstenberger, N. Hirata, M. Liukis, P.J. Maechling, A. Strader, M. Taroni, S. Wiemer, J.D. Zechar, J. Zhuang, Seismol. Res. Lett. 89, 1305 (2018)

    Article  Google Scholar 

  43. A. Sol, H. Turan, Sci. Eng. Ethics 10, 655 (2004)

    Article  Google Scholar 

  44. K. Starbird, L. Palen, Working & sustaining the virtual disaster desk, in Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW, New York, USA, 2013 (ACM Press, New York, USA, 2013)

  45. U.S. Geological Survey Earthquake Hazards Program, Advanced National Seismic System (ANSS) comprehensive catalog of earthquake events and products (2017)

  46. D.L. Wells, K.J. Coppersmith, Bull. Seismol. Soc. Am. 84, 974 (1994)

    Google Scholar 

  47. J. Whitehill, Climbing the kaggle leaderboard by exploiting the log-loss oracle, Technical report (2018)

  48. J. Woessner, S. Hainzl, W. Marzocchi, M.J. Werner, A.M. Lombardi, F. Catalli, B. Enescu, M. Cocco, M.C. Gerstenberger, S. Wiemer, J. Geophys. Res. 116, 1 (2011)

    Google Scholar 

  49. H.O. Wood, B. Gutenberg, Earthquake Prediction (1935)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavor Kamer.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamer, Y., Nandan, S., Ouillon, G. et al. Democratizing earthquake predictability research: introducing the RichterX platform. Eur. Phys. J. Spec. Top. 230, 451–471 (2021). https://doi.org/10.1140/epjst/e2020-000260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000260-2

Navigation