Biological lipid nanotubes and their potential role in evolution

Abstract

The membrane of cells and organelles are highly deformable fluid interfaces, and can take on a multitude of shapes. One distinctive and particularly interesting property of biological membranes is their ability to from long and uniform nanotubes. These nanoconduits are surprisingly omnipresent in all domains of life, from archaea, bacteria, to plants and mammals. Some of these tubes have been known for a century, while others were only recently discovered. Their designations are different in different branches of biology, e.g. they are called stromule in plants and tunneling nanotubes in mammals. The mechanical transformation of flat membranes to tubes involves typically a combination of membrane anchoring and external forces, leading to a pulling action that results in very rapid membrane nanotube formation – micrometer long tubes can form in a matter of seconds. Their radius is set by a mechanical balance of tension and bending forces. There also exists a large class of membrane nanotubes that form due to curvature inducing molecules. It seems plausible that nanotube formation and functionality in plants and animals may have been inherited from their bacterial ancestors during endosymbiotic evolution. Here we attempt to connect observations of nanotubes in different branches of biology, and outline their similarities and differences with the aim of providing a perspective on their joint functions and evolutionary origin.

References

  1. 1.

    A. Rustom, R. Saffrich, I. Markovic, P. Walther, H.H. Gerdes, Science 303, 1007 (2004)

    Article  ADS  Google Scholar 

  2. 2.

    T.B. Kornberg, Wiley Interdiscip. Rev.: Dev. Biol. 3, 445 (2014)

    Article  Google Scholar 

  3. 3.

    F.A. Ramrez-Weber, T.B. Kornberg, Cell 97, 599 (1999)

    Article  Google Scholar 

  4. 4.

    M.R. Hanson, K.M. Hines, Plant Physiol. 176, 128 (2018)

    Article  Google Scholar 

  5. 5.

    J.O. Brunkard, A.M. Runkel, P.C. Zambryski, Proc. Natl. Acad. Sci. USA 112, 10044 (2015)

    Article  ADS  Google Scholar 

  6. 6.

    M.H. Schattat, S. Griffiths, N. Mathur, K. Barton, M.R. Wozny, N. Dunn, J.S. Greenwood, J. Mathur, Plant Cell 24, 1465 (2012)

    Article  Google Scholar 

  7. 7.

    E. Marguet, M. Gaudin, E. Gauliard, I. Fourquaux, S. Le Blond Du, I. Plouy, P.Forterre Matsui, Biochem. Soc. Trans. 41, 436 (2013)

    Article  Google Scholar 

  8. 8.

    S.Y.M. Ng, B. Zolghadr, A.J.M. Driessen, S.V. Albers, K.F. Jarrell, J. Bacteriol. 190, 6039 (2008)

    Article  Google Scholar 

  9. 9.

    H. Imachi, M.K. Nobu, N. Nakahara, Y. Morono, M. Ogawara, Y. Takaki, Y. Takano, K. Uematsu, T. Ikuta, M. Ito, Y. Matsui, M. Miyazaki, K. Murata, Y. Saito, S. Sakai, C. Song, E. Tasumi, Y. Yamanaka, T. Yamaguchi, Y. Kamagata, H. Tamaki, K. Takai, Nature 577, 519 (2020)

    Article  ADS  Google Scholar 

  10. 10.

    G.P. Dubey, S. Ben-Yehuda, Cell 144, 590 (2011)

    Article  Google Scholar 

  11. 11.

    A.K. Baidya, I. Rosenshine, S. Ben-Yehuda, Nat. Commun. 11, 1938 (2020)

    Article  ADS  Google Scholar 

  12. 12.

    B. Peralta, D. Gil-Carton, D. Castaño-Dez, A. Bertin, C. Boulogne, H.M. Oksanen, D.H. Bamford, N.G.A. Abrescia, PLoS Biol. 11, e1001667 (2013)

    Article  Google Scholar 

  13. 13.

    F. Furt, F. Simon-Plas, S. Mongrand, Plant Cell Monographs 19, 3 (2010)

    Article  Google Scholar 

  14. 14.

    C. Sohlenkamp, O. Geiger, FEMS Microbiol. Rev. 40, 133 (2015)

    Article  Google Scholar 

  15. 15.

    D.B. Weinstein, J.B. Marsh, M.C. Glick, L. Warren, J. Biol. Chem. 244, 4103 (1969)

    Google Scholar 

  16. 16.

    D.B. Weinstein, J.B. Marsh, M.C. Glick, L. Warren, J. Biol. Chem. 245, 3928 (1970)

    Google Scholar 

  17. 17.

    G. Van Meer, D.R. Voelker, G.W. Feigenson, Nat. Rev. Mol. Cell Biol. 9, 112 (2008)

    Article  Google Scholar 

  18. 18.

    W. Helfrich, Zeitschrift fur Naturforschung - Sect, C J. Biosci. 28, 693 (1973)

    Google Scholar 

  19. 19.

    I. Derényi, F. Jülicher, J. Prost, Phys. Rev. Lett. 88, 238101 (2002)

    Article  ADS  Google Scholar 

  20. 20.

    T.R. Powers, G. Huber, R.E. Goldstein, Phys. Rev. E 65, 41901 (2002)

    Article  ADS  Google Scholar 

  21. 21.

    O. Rossier, D. Cuvelier, N. Borghi, P.H. Puech, I. Derényi, A. Buguin, P. Nassoy, F. Brochard-Wyart, Langmuir 19, 575 (2003)

    Article  Google Scholar 

  22. 22.

    W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys. J. 79, 328 (2000)

    Article  Google Scholar 

  23. 23.

    S.J. Marrink, A.E. Mark, J. Am. Chem. Soc. 125, 15233 (2003)

    Article  Google Scholar 

  24. 24.

    M.M. Kozlov, L.V. Chernomordik, Curr. Opin. Struct. Biol. 33, 61 (2015)

    Article  Google Scholar 

  25. 25.

    E. Beltrán-Heredia, F. Tsai, S. Salinas-Almaguer, F.J. Cao, P. Bassereau, F. Monroy, Commun. Biol. 2, 225 (2019)

    Article  Google Scholar 

  26. 26.

    A. Dols-Perez, V. Marin, G.J. Amador, R. Kieffer, D. Tam, M.E. Aubin-Tam, A.C.S. Appl, Mater. Interfaces 11, 33620 (2019)

    Article  Google Scholar 

  27. 27.

    A. Jesorka, N. Stepanyants, H. Zhang, B. Ortmen, B. Hakonen, O. Orwar, Nat. Protoc. 6, 791 (2011)

    Article  Google Scholar 

  28. 28.

    T. Lobovkina, P.G. Dommersnes, S. Tiourine, J.F. Joanny, O. Orwar, Eur. Phys. J. E 26, 295 (2008)

    Article  Google Scholar 

  29. 29.

    D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy, Biophys. J. 88, 2714 (2005)

    Article  Google Scholar 

  30. 30.

    T. Lobovkina, P. Dommersnes, J.-F. Joanny, J. Hurtig, O. Orwar, Phys. Rev. Lett. 97, 188105 (2006)

    Article  ADS  Google Scholar 

  31. 31.

    P.G. Dommersnes, O. Orwar, F. Brochard-Wyart, J.F. Joanny, Europhys. Lett. 70, 271 (2005)

    Article  ADS  Google Scholar 

  32. 32.

    J. Hurtig, O. Orwar, Soft Matter 4, 1515 (2008)

    Article  ADS  Google Scholar 

  33. 33.

    A. Upadhyaya, M.P. Sheetz, Biophys. J. 86, 2923 (2004)

    Article  ADS  Google Scholar 

  34. 34.

    I. Tsafrir, Y. Caspi, M.A. Guedeau-Boudeville, T. Arzi, J. Stavans, Phys. Rev. Lett. 91 (2003)

  35. 35.

    I. Gözen, C. Billerit, P. Dommersnes, A. Jesorka, O. Orwar, Soft Matter 7, 9706 (2011)

    Article  ADS  Google Scholar 

  36. 36.

    C. van der Wel, A. Vahid, A. Šarić, T. Idema, D. Heinrich, D.J. Kraft, Sci. Rep. 6, 32825 (2016)

    Article  ADS  Google Scholar 

  37. 37.

    Y.F. Barooji, A. Rørvig-Lund, S. Semsey, S.N.S. Reihani, P.M. Bendix, Sci. Rep. 6 (2016)

  38. 38.

    J. Steinkühler, P. De Tillieux, R.L. Knorr, R. Lipowsky, R. Dimova, Sci. Rep. 8 (2018)

  39. 39.

    I. Tsafrir, D. Sagi, T. Arzi, M.A. Guedeau-Boudeville, V. Frette, D. Kandel, J. Stavans, Phys. Rev. Lett. 86, 1138 (2001)

    Article  ADS  Google Scholar 

  40. 40.

    A. Guo, C. Zhang, S. Wei, B. Chen, L.S. Song, Cardiovasc. Res. 98, 204 (2013)

    Article  Google Scholar 

  41. 41.

    L. Al-Qusairi, J. Laporte, Skeletal Muscle 1, 26 (2011)

    Article  Google Scholar 

  42. 42.

    C. Lor, J.D. Lopes, M.K. Mattson-Hoss, J. Xu, L.S. Hirst, Front. Mater. 3, 6 (2016)

    Article  ADS  Google Scholar 

  43. 43.

    M. Karlsson, K. Sott, M. Davidson, A.S. Cans, P. Linderholm, D. Chiuand, O. Orwar, Proc. Natl. Acad. Sci. USA 99, 11573 (2002)

    Article  ADS  Google Scholar 

  44. 44.

    A. Roux, G. Koster, M. Lenz, B. Sorre, J.B. Manneville, P. Nassoy, P. Bassereau, Proc. Natl. Acad. Sci. USA 107, 4141 (2010)

    Article  ADS  Google Scholar 

  45. 45.

    C. Leduc, O. Campàs, J.F. Joanny, J. Prost, P. Bassereau, Biochim. Biophys. Acta – Biomembr. 1798, 1418 (2010)

    Article  Google Scholar 

  46. 46.

    C.M. Waterman-Storer, E.D. Salmon, Curr. Biol. 8, 798 (1998)

    Article  Google Scholar 

  47. 47.

    Y. Guo, D. Li, S. Zhang, Y. Yang, J.J. Liu, X. Wang, C. Liu, D.E. Milkie, R.P. Moore, U.S. Tulu, D.P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li, Cell 175, 1430 (2018)

    Article  Google Scholar 

  48. 48.

    W.A. Prinz, A. Toulmay, T. Balla, Nat. Rev. Mol. Cell Biol. 21, 7 (2020)

    Article  Google Scholar 

  49. 49.

    L. Ma, Y. Li, J. Peng, D. Wu, X. Zhao, Y. Cui, L. Chen, X. Yan, Y. Du, L. Yu, Cell Res. 25, 24 (2015)

    Article  Google Scholar 

  50. 50.

    B.E.S. Gunning, Protoplasma 225, 33 (2005)

    Article  Google Scholar 

  51. 51.

    M. Simunovic, E. Evergren, I. Golushko, C. Prévost, H.F. Renard, L. Johannes, H.T. McMahon, V. Lorman, G.A. Voth, P. Bassereau, Proc. Natl. Acad. Sci. USA 113, 11226 (2016)

    Article  Google Scholar 

  52. 52.

    D. Deamer, Life (Basel) 7, 5 (2017)

    Google Scholar 

  53. 53.

    O. Stempler, A.K. Baidya, S. Bhattacharya, G.B. Malli Mohan, E. Tzipilevich, L. Sinai, G. Mamou, S. Ben-Yehuda, Nat. Commun. 8, 315 (2017)

    Article  ADS  Google Scholar 

  54. 54.

    G.P. Dubey, G.B. Malli Mohan, A. Dubrovsky, T. Amen, S. Tsipshtein, A. Rouvinski, A. Rosenberg, D. Kaganovich, E. Sherman, O. Medalia, S. Ben-Yehuda, Dev. Cell 36, 453 (2016)

    Article  Google Scholar 

  55. 55.

    S. Gill, R. Catchpole, P. Forterre, FEMS Microbiol. Rev. 43, 273 (2019)

    Article  Google Scholar 

  56. 56.

    H. Hoitzing, I.G. Johnston, N.S. Jones, BioEssays 37, 687 (2015)

    Article  Google Scholar 

  57. 57.

    L.D. Zorova, V.A. Popkov, E.Y. Plotnikov, D.N. Silachev, I.B. Pevzner, S.S. Jankauskas, V.A. Babenko, S.D. Zorov, A.V. Balakireva, M. Juhaszova, S.J. Sollott, D.B. Zorov, Anal. Biochem. 552, 50 (2018)

    Article  Google Scholar 

  58. 58.

    S.W. Perry, J.P. Norman, J. Barbieri, E.B. Brown, H.A. Gelbard, BioTechniques 50, 98 (2011)

    Article  Google Scholar 

  59. 59.

    J. Nixon-Abell, C.J. Obara, A.V. Weigel, D. Li, W.R. Legant, C.S. Xu, H.A. Pasolli, K. Harvey, H.F. Hess, E. Betzig, C. Blackstone, J. Lippincott-Schwartz, Science 354, aaf3928 (2016)

    Article  Google Scholar 

  60. 60.

    A. Trucco, R.S. Polischuck, O. Martella, A. Di Pentima, A. Fusella, D. Di Giandomenico, E. San Pietro, G.V. Beznoussenko, E.V. Polischuk, M. Baldassarre, R. Buccione, W.J.C. Geerts, A.J. Koster, K.N.J. Burger, A.A. Mironov, A. Luini, Nat. Cell Biol. 6, 1071 (2004)

    Article  Google Scholar 

  61. 61.

    J.C. Simpson, T. Nilsson, R. Pepperkok, Mol. Biol. Cell 17, 723 (2006)

    Article  Google Scholar 

  62. 62.

    W.F. Martin, S. Garg, V. Zimorski, Philos. Trans. R. Soc. B: Biol. Sci. 370, 20140330 (2015)

    Article  Google Scholar 

  63. 63.

    D.A. Baum, B. Baum, BMC Biol. 12, 76 (2014)

    Article  Google Scholar 

  64. 64.

    A. Santinho, V.T. Salo, A. Chorlay, S. Li, X. Zhou, M. Omrane, E. Ikonen, A.R. Thiam, Curr. Biol. (2020), in press

  65. 65.

    G. Benard, M. Karbowski, Semin. Cell Dev. Biol. 20, 365 (2009)

    Article  Google Scholar 

  66. 66.

    S. Roy, H. Huang, S. Liu, T.B. Kornberg, Science 343, 1244624 (2014)

    Article  Google Scholar 

  67. 67.

    Y. Chen, Y. Li, L. Ma, L. Yu, in Methods in Molecular Biology (2018), Vol. 1749, p. 43

    Article  Google Scholar 

  68. 68.

    F. Brette, C. Orchard, Circulation Res., 92, 1182 (2003)

    Article  Google Scholar 

  69. 69.

    A.F. Huxley, Proc. R. Soc. London. Ser. B. Biol. Sci. 178, 1 (1971)

    ADS  Google Scholar 

  70. 70.

    E. Savio-Galimberti, J. Frank, M. Inoue, J.I. Goldhaber, M.B. Cannell, J.H.B. Bridge, F.B. Sachse, Biophys. J. 95, 2053 (2008)

    Article  ADS  Google Scholar 

  71. 71.

    L.S. Song, J.S.K. Sham, M.D. Stern, E.G. Lakatta, H. Cheng, J. Physiol. 512, 677 (1998)

    Article  Google Scholar 

  72. 72.

    M. Locke, Tissue Cell 19, 301 (1987)

    Article  Google Scholar 

  73. 73.

    X. Wang, H.H. Gerdes, Cell Death Differentiation 22, 1181 (2015)

    Article  Google Scholar 

  74. 74.

    M. Tardivel, S. Bégard, L. Bousset, S. Dujardin, A. Coens, R. Melki, L. Buée, M. Colin, Acta Neuropathol. Commun. 4, 117 (2016)

    Article  Google Scholar 

  75. 75.

    J. Miller, S.E. Fraser, D. McClay, Development 121, 2501 (1995)

    Google Scholar 

  76. 76.

    Y. Huang, B. Zucker, S. Zhang, S. Elias, Y. Zhu, H. Chen, T. Ding, Y. Li, Y. Sun, J. Lou, M.M. Kozlov, L. Yu, Nat. Cell Biol. 21, 991 (2019)

    Article  Google Scholar 

  77. 77.

    D. Jiang, Z. Jiang, D. Lu, X. Wang, H. Liang, J. Zhang, Y. Meng, Y. Li, D. Wu, Y. Huang, Y. Chen, H. Deng, Q. Wu, J. Xiong, A. Meng, L. Yu, Nat. Cell Biol. 21, 966 (2019)

    Article  Google Scholar 

  78. 78.

    X. Zhao, Y. Lei, J. Zheng, J. Peng, Y. Li, L. Yu, Y. Chen, Cell Discovery 5, 27 (2019)

    Article  Google Scholar 

  79. 79.

    M. Schattat, K. Barton, B. Baudisch, R.B. Klösgen, J. Mathur, Plant Physiol. 155, 1667 (2011)

    Article  Google Scholar 

  80. 80.

    A. Charles-Orszag, F.C. Tsai, D. Bonazzi, V. Manriquez, M. Sachse, A. Mallet, A. Salles, K. Melican, R. Staneva, A. Bertin, C. Millien, S. Goussard, P. Lafaye, S. Shorte, M. Piel, J. Krijnse-Locker, F. Brochard-Wyart, P. Bassereau, G. Duménil, Nat. Commun. 9, 4450 (2018)

    Article  ADS  Google Scholar 

  81. 81.

    K.M. Veley, S. Marshburn, C.E. Clure, E.S. Haswell, Curr. Biol. 22, 408 (2012)

    Article  Google Scholar 

  82. 82.

    R.H. Köhler, J. Cao, W.R. Zipfel, W.W. Webb, M.R. Hanson, Science 276, 2039 (1997)

    Article  Google Scholar 

  83. 83.

    M. Kretschmer, D. Damoo, A. Djamei, J. Kronstad, Pathogens 9 (2020)

  84. 84.

    J.L. Caplan, A.S. Kumar, E. Park, M.S. Padmanabhan, K. Hoban, S. Modla, K. Czymmek, S.P. Dinesh-Kumar, Dev. Cell 34, 45 (2015)

    Article  Google Scholar 

  85. 85.

    A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L.S. Tsimring, J. Hasty, Nature 481, 39 (2012)

    Article  ADS  Google Scholar 

  86. 86.

    M. Szechyńska-Hebda, M. Lewandowska, S. Karpiński, Front. Physiol. 8, 684 (2017)

    Article  Google Scholar 

  87. 87.

    M.W. Austefjord, H.H. Gerdes, X. Wang, Commun. Integr. Biol. 7, e27934 (2014)

    Article  Google Scholar 

  88. 88.

    M. Bischoff, A.C. Gradilla, I. Seijo, G. Andrés, C. Rodrguez-Navas, L. González-Méndez, I. Guerrero, Nat. Cell Biol. 15, 1269 (2013)

    Article  Google Scholar 

  89. 89.

    C. Franzini-Armstrong, L. Landmesser, G. Pilar, J. Cell Biol. 64, 493 (1975)

    Article  Google Scholar 

  90. 90.

    R.E. Powers, S. Wang, T.Y. Liu, T.A. Rapoport, Nature 543, 257 (2017)

    Article  ADS  Google Scholar 

  91. 91.

    D.S. Schwarz, M.D. Blower, Cell. Mol. Life Sci. 73, 79 (2016)

    Article  Google Scholar 

  92. 92.

    P. Georgiades, V.J. Allan, G.D. Wright, P.G. Woodman, P. Udommai, M.A. Chung, T.A. Waigh, Sci. Rep. 7, 16474 (2017)

    Article  ADS  Google Scholar 

  93. 93.

    C. Wang, W. Du, Q.P. Su, M. Zhu, P. Feng, Y. Li, Y. Zhou, N. Mi, Y. Zhu, D. Jiang, S. Zhang, Z. Zhang, Y. Sun, L. Yu, Cell Res. 25, 1108 (2015)

    Article  Google Scholar 

  94. 94.

    L. Plecitá-Hlavatá, M. Lessard, J. Šantorová, J. Bewersdorf, P. Ježek, Biochim. Biophys. Acta – Bioenerg. 1777, 834 (2008)

    Article  Google Scholar 

  95. 95.

    J.C. Gray, J.A. Sullivan, J.M. Hibberd, M.R. Hansen, Plant Biol. 3, 223 (2001)

    Article  Google Scholar 

  96. 96.

    A. Holzinger, O. Buchner, C. Lütz, M.R. Hanson, Protoplasma 230, 23 (2007)

    Article  Google Scholar 

  97. 97.

    K.A. Pyke, C.A. Howells, Ann. Bot. 90, 559 (2002)

    Article  Google Scholar 

  98. 98.

    M. Drab, D. Stopar, V. Kralj-Iglič, A. Iglič, Cells 8, 626 (2019)

    Article  Google Scholar 

  99. 99.

    L. González-Méndez, A.C. Gradilla, I. Guerrero, Development (Cambridge) 146, dev174607 (2019)

    Article  Google Scholar 

  100. 100.

    Q. Tian, S. Pahlavan, K. Oleinikow, J. Jung, S. Ruppenthal, A. Scholz, C. Schumann, A. Kraegeloh, M. Oberhofer, P. Lipp, L. Kaestner, J. Mol. Cell. Cardiology 52, 113 (2012)

    Article  Google Scholar 

  101. 101.

    P. Cao, L. Renna, G. Stefano, F. Brandizzi, Curr. Biol. 26, 3245 (2016)

    Article  Google Scholar 

  102. 102.

    A.S. Moore, Y.C. Wong, C.L. Simpson, E.L.F. Holzbaur, Nat. Commun. 7, 12886 (2016)

    Article  ADS  Google Scholar 

  103. 103.

    A.S. Kumar, E. Park, A. Nedo, A. Alqarni, L. Ren, K. Hoban, S. Modla, J.H. McDonald, C. Kambhamettu, S.P. Dinesh-Kumar, J.L. Caplan, eLife 7, e23625 (2018)

    Article  Google Scholar 

  104. 104.

    A.J. Roger, S.A. Muñoz-Gómez, R. Kamikawa, Curr. Biol. 27, R1177 (2017)

    Article  Google Scholar 

  105. 105.

    K.R. Moore, C. Magnabosco, L. Momper, D.A. Gold, T. Bosak, G.P. Fournier, Front. Microbiol. 10, 1612 (2019)

    Article  Google Scholar 

  106. 106.

    J. Espadas, D. Pendin, R. Bocanegra, A. Escalada, G. Misticoni, T. Trevisan, A. Velasco del Olmo, A. Montagna, S. Bova, B. Ibarra, P.I. Kuzmin, P.V. Bashkirov, A.V. Shnyrova, V.A. Frolov, A. Daga, Nat. Commun. 10, 5327 (2019)

    Article  ADS  Google Scholar 

  107. 107.

    S.B. Gould, S.G. Garg, W.F. Martin, Trends Microbiol. 24, 525 (2016)

    Article  Google Scholar 

  108. 108.

    S. Benomar, D. Ranava, M.L. Cárdenas, E. Trably, Y. Rafrafi, A. Ducret, J. Hamelin, E. Lojou, J.P. Steyer, M.T. Giudici-Orticoni, Nat. Commun. 6, 6283 (2015)

    Article  ADS  Google Scholar 

  109. 109.

    E. Couradeau, K. Benzerara, E. Gérard, D. Moreira, S. Bernard, G.E. Brown Jr., P. López-Garca, Science 336, 459 (2012)

    Article  ADS  Google Scholar 

  110. 110.

    A.E. Vincent, D.M. Turnbull, V. Eisner, G. Hajnóczky, M. Picard, Trends Cell Biol. 27, 787 (2017)

    Article  Google Scholar 

  111. 111.

    K. Pyke, Curr. Biol. 16, R60 (2006)

    Article  Google Scholar 

  112. 112.

    T.F. Zhu, J.W. Szostak, J. Am. Chem. Soc. 131, 5705 (2009)

    Article  Google Scholar 

  113. 113.

    E.S. Köksal, S. Liese, I. Kantarci, R. Olsson, A. Carlson, I. Gözen, ACS Nano 13, 6867 (2019)

    Article  Google Scholar 

  114. 114.

    M. Čáp, L. Váchová, Z. Palková, Oxidative Medicine and Cellular Longevity (2012)

  115. 115.

    I. Serrano, C. Audran, S. Rivas, J. Exp. Bot. 67, 3845 (2016)

    Article  Google Scholar 

  116. 116.

    M. Bouhaddou, D. Memon, B. Meyer, K.M. White, V.V. Rezelj, M.C. Marrero, B.J. Polacco, J.E. Melnyk, S. Ulferts, R.M. Kaake, J. Batra, A.L. Richards, E. Stevenson, D.E. Gordon, A. Rojc, K. Obernier, J.M. Fabius, M. Soucheray, L. Miorin, E. Moreno, C. Koh, Q.D. Tran, A. Hardy, R. Robinot, T. Vallet, B.E. Nilsson-Payant, C. Hernandez-Armenta, A. Dunham, S. Weigang, J. Knerr, M. Modak, D. Quintero, Y. Zhou, A. Dugourd, A. Valdeolivas, T. Patil, Q. Li, R. Hüttenhain, M. Cakir, M. Muralidharan, M. Kim, G. Jang, B. Tutuncuoglu, J. Hiatt, J.Z. Guo, J. Xu, S. Bouhaddou, C.J.P. Mathy, A. Gaulton, E.J. Manners, E. Félix, Y. Shi, M. Goff, J.K. Lim, T. McBride, M.C. O’Neal, Y. Cai, J.C.J. Chang, D.J. Broadhurst, S. Klippsten, E. De wit, A.R. Leach, T. Kortemme, B. Shoichet, M. Ott, J. Saez-Rodriguez, B.R. tenOever, D. Mullins, E.R. Fischer, G. Kochs, R. Grosse, A. Garca-Sastre, M. Vignuzzi, J.R. Johnson, K.M. Shokat, D.L. Swaney, P. Beltrao, N.J. Krogan, Cell 182, 685 (2020)

    Article  Google Scholar 

  117. 117.

    K. Chang, J. Baginski, S.F. Hassan, M. Volin, D. Shukla, V. Tiwari, Front. Microbiol. 7, 300 (2016)

    Google Scholar 

  118. 118.

    B. Krenz, H. Jeske, T. Kleinow, Front. Plant Sci. 3, 291 (2012)

    Article  Google Scholar 

  119. 119.

    A. Rustom, Open Biol. 6, 160057 (2016)

    Article  Google Scholar 

  120. 120.

    L. Zhang, Y. Zhang, Neurosci. Bull. 31, 371 (2015)

    Article  Google Scholar 

  121. 121.

    S. Stonebloom, J.O. Brunkard, A.C. Cheung, K. Jiang, L. Feldman, P. Zambryski, Plant Physiol. 158, 190 (2012)

    Article  Google Scholar 

  122. 122.

    A.Y. Mulkidjanian, M.Y. Galperin, E.V. Koonin, Trends Biochem. Sci. 34, 206 (2009)

    Article  Google Scholar 

  123. 123.

    N. Doi, H. Yanagawa, FEBS Lett. 430, 150 (1998)

    Article  Google Scholar 

  124. 124.

    P. Forterre, M. Krupovic, Viruses: Essential Agents of Life (Springer, 2012), p. 43.

  125. 125.

    J.P. Stoye, Nat. Rev. Microbiol. 10, 395 (2012)

    Article  Google Scholar 

  126. 126.

    W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M.R.E. Aly, V. Fraisier, J.C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, L. Johannes, Nature 450, 670 (2007)

    Article  ADS  Google Scholar 

  127. 127.

    M. Osawa, D.E. Anderson, H.P. Erickson, Science 320, 792 (2008)

    Article  ADS  Google Scholar 

  128. 128.

    R. Shlomovitz, N.S. Gov, Phys. Biol. 6, 046017 (2009)

    Article  ADS  Google Scholar 

  129. 129.

    E. Nogales, K.H. Downing, L.A. Amos, J. Löwe, Nat. Struct. Biol. 5, 451 (1998)

    Article  Google Scholar 

  130. 130.

    M. Pilhofer, M.S. Ladinsky, A.W. McDowall, G. Petroni, G.J. Jensen, PLoS Biol. 9, e1001213 (2011)

    Article  Google Scholar 

  131. 131.

    Y. Diekmann, J.B. Pereira-Leal, Biochem. J. 449, 319 (2012)

    Article  Google Scholar 

  132. 132.

    M. Staykova, D.P. Holmes, C. Read, H.A. Stone, Proc. Natl. Acad. Sci. USA 108, 9084 (2011)

    Article  ADS  Google Scholar 

  133. 133.

    İ. Gözen, ACS Nano 13, 10869 (2019)

    Article  Google Scholar 

  134. 134.

    E.S. Köksal, S. Liese, L. Xue, R. Ryskulov, L. Viitala, A. Carlson, İ. Gözen, Small 16, 2002529 (2020)

    Article  Google Scholar 

  135. 135.

    A. Hangas, K. Aasumets, N.J. Kekäläinen, M. Paloheinä, J.L. Pohjoismäki, J.M. Gerhold, S. Goffart, Nucleic Acids Res. 46, 9625 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Open access funding provided by NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital - Trondheim University Hospital).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Irep Gözen or Paul Dommersnes.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gözen, I., Dommersnes, P. Biological lipid nanotubes and their potential role in evolution. Eur. Phys. J. Spec. Top. 229, 2843–2862 (2020). https://doi.org/10.1140/epjst/e2020-000130-7

Download citation