Skip to main content

In-silico study of hemodynamic effects in a coronary artery with stenosis

Abstract

The paper presents a study of hemodynamic processes in an artery with stenosis. The Navier–Stokes model and the Carreau model for a non-Newtonian fluid are proposed for computer simulations. Computational experiments were performed using the FlowVision© software. The results of a test simulation for blood flow in the 2D tube, as well as a simulation for the native artery model, based on medical research data, are presented. The simulation results show that in a native artery with a stenosis, the distribution of blood velocity and viscosity may be asymmetric, and their local values differ significantly from the average values observed in the artery after the presumed revascularization. The results have great potential importance for diagnosing and treating arterial stenosis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. Mozaffarian, E.J. Benjamin, A.S. Go, et al., Circulation 133, e535 (2015)

    Google Scholar 

  2. 2.

    J. Wasilewski, K. Mirota, M. Hawranek, L. Polośki, Postepy w Kardiologii Interwencyjnej/Adv. Interv. Cardiol. 9, 160 (2013)

    Google Scholar 

  3. 3.

    F.J. Neumann, M. Sousa-Uva, A. Ahlsson, F. Alfonso, A.P. Banning, U. Benedetto, et al., Eur. Heart J. 40, 87 (2019)

    Article  Google Scholar 

  4. 4.

    C. Berry, D. Corcoran, B. Hennigan, S. Watkins, J. Layland, K.G. Oldroyd, Eur. Heart J. 36, 3155 (2015)

    Article  Google Scholar 

  5. 5.

    G.G. Toth, B. Toth, N.P. Johnson, et al., Circ.: Cardiovasc. Interv. 36, 751 (2014)

    Google Scholar 

  6. 6.

    M. Khanmohammadi, K. Engan, C. Sæland, T. Eftestøl, A.I. Larsen, Front. Cardiovasc. Med. 6, 1 (2019)

    Article  Google Scholar 

  7. 7.

    Z. Malota, J. Glowacki, W. Sadowski, M. Kostur, BMC Cardiovasc. Disord. 18, 132 (2018)

    Article  Google Scholar 

  8. 8.

    M.G. Rabby, S.P. Shupti, Md. Mamun Molla, J. Fluids 2014, 757902 (2014)

    Article  Google Scholar 

  9. 9.

    S.P. Shupti, Md. Mamun Molla, M. Mia, Front. Mech. Eng. 3, 12 (2017)

    Article  Google Scholar 

  10. 10.

    F. Abraham, M. Behr, M. Heinkenschloss, Comput. Methods Biomech. Biomed. Eng. 8, 127 (2005)

    Article  Google Scholar 

  11. 11.

    S. Karimi, P. Jalali, M. Dabagh, M. Dabir, Biomed. Eng. Applic. Basis Commun. 25, 1350023 (2013)

    Article  Google Scholar 

  12. 12.

    S. Tu, J.Westra, et al., JACC: Cardiovasc. Interv. 9, 2024 (2016)

    Google Scholar 

  13. 13.

    W.F. Fearon, et al., Circulation 139, 477 (2019)

    Article  Google Scholar 

  14. 14.

    R.C. Gosling, et al., Front. Physiol. 9, 1107 (2018)

    Article  Google Scholar 

  15. 15.

    S.Yu. Sokolov, S.O. Volchkov, I.S. Bessonov, V.V. Chestukhin, G.V. Kurlyandskaya, F.A. Blyakhman, Pattern Recogn. Image Anal. 29, 750 (2019)

    Article  Google Scholar 

  16. 16.

    O.K. Baskurt, M.R. Hardeman, M.W. Rampling, H.J. Meiselman,Handbook of hemorheology and hemodynamics (IOS Press, Amsterdam, 2007)

  17. 17.

    G.P. Itkin,Biofizika krovoobrashcheniya (MAI Publ., Moscow, 2002) (in Russian)

  18. 18.

    P.J. Carreau, J. Rheol. 16, 99 (1972)

    ADS  Google Scholar 

  19. 19.

    V.V. Bilolov, L. Kowalski, J. Duszcyk, L. Katgerman, J. Mater. Process. Technol. 178, 194 (2006)

    Article  Google Scholar 

  20. 20.

    Flow Vision, https://flowvisioncfd.com

  21. 21.

    D. Anderson, J.C. Tannehill, R.H. Pletcher,Computational fluid mechanics and heat transfer (Taylor & Francis, Boca Raton, 2016)

  22. 22.

    K.E. Sorokin, P.M. Byvaltsev, A.A. Aksenov, S.V. Zhluktov, D.V. Savitskiy, A.A. Babulin, V.I. Shevyakov, Comput. Res. Model. 12, 83 (2020)

    Article  Google Scholar 

  23. 23.

    A.A. Aksenov, S.V. Zhluktov, V.V. Shmelev, M.N. Zhestkov, S.A. Rogozhkin, V.V. Pakholkov, S.F. Shepelev, Comput. Res. Model. 9, 87 (2017)

    Article  Google Scholar 

  24. 24.

    A.A. Aksenov, V.N. Gavrilyuk, S.F. Timushev, Acoust. Phys. 62, 447 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    A.A. Aksenov, Comput. Res. Model. 9, 5 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilya O. Starodumov.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starodumov, I.O., Blyakhman, F.A., Sokolov, S.Y. et al. In-silico study of hemodynamic effects in a coronary artery with stenosis. Eur. Phys. J. Spec. Top. 229, 3009–3020 (2020). https://doi.org/10.1140/epjst/e2020-000128-2

Download citation