EuPRAXIA Conceptual Design Report

An Erratum to this article was published on 01 December 2020

This article has been updated

Abstract

This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years.

Change history

References

  1. 1.

    Wideroe, R. Über ein neues Prinzip zur Herstellung hoher Spannungen. Arch. für Elektrotechnik 21, 387–406 (1928).

    Article  Google Scholar 

  2. 2.

    Van der Meer, S. Stochastic Damping of Betatron Oscillations tech. rep(CERN, Geneva, 1972), CERN/ISR–PO/72–31.

  3. 3.

    Nobel Media AB. The Nobel Prize in Physics 1984 2019. https://www.nobelprize.org/prizes/physics/1984/summary/ (2019).

  4. 4.

    Tajima, T. & Dawson, J.M. Laser Electron Accelerator. Phys. Rev. Lett. 43, 267–270. doi:https://doi.org/10.1103/PhysRevLett.43.267. http://link.aps.org/doi/10.1103/PhysRevLett.43.267 (1979).

    Article  ADS  Google Scholar 

  5. 5.

    Nobel Media AB. The Nobel Prize in Physics 2018 2019. https://www.nobelprize.org/prizes/physics/2018/summary/ (2019).

  6. 6.

    European Commission. Open innovation, open science, open to the world – EU Law and Publications https://ec.europa.eu/digital-single-market/en/news/open-innovation-open-science-open-world-vision-europe (2016).

  7. 7.

    DESY. European Network for Novel Accelerators EuroNNAc3 2019. https://www.euronnac.eu/ (2019).

  8. 8.

    Henning, W. & Shank, C. Accelerators for America’s future tech. rep. (2010). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Accelerators+for+America?s+Future#0.

  9. 9.

    Gonsalves, A.J., et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 122, 84801. doi:https://doi.org/10.1103/PhysRevLett.122.084801. https://doi.org/10.1103/PhysRevLett.122.084801 (2019).

    Article  ADS  Google Scholar 

  10. 10.

    Tajima, T. & Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270. doi:https://doi.org/10.1103/PhysRevLett.43.267 (1979).

    Article  ADS  Google Scholar 

  11. 11.

    Geddes, C.G.R., et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541. doi:https://doi.org/10.1038/nature02900 (2004).

    Article  ADS  Google Scholar 

  12. 12.

    Mangles, S.P.D., et al. Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431, 535–538. doi:https://doi.org/10.1038/nature02939 (2004).

    Article  ADS  Google Scholar 

  13. 13.

    Faure, J., et al. A laser – plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544. doi:https://doi.org/10.1038/nature02900.1 (2004).

    Article  ADS  Google Scholar 

  14. 14.

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    Article  ADS  Google Scholar 

  15. 15.

    Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition. Phys. Rev. Lett. 86, 1011–1014. doi:https://doi.org/10.1103/PhysRevLett.86.1011. http://link.aps.org/doi/10.1103/PhysRevLett.86.1011 (Feb. 2001).

    Article  ADS  Google Scholar 

  16. 16.

    Chien, T.-Y., et al. Spatially Localized Self-Injection of Electrons in a Self-Modulated Laser- Wakefield Accelerator by Using a Laser-Induced Transient Density Ramp. Phys. Rev. Lett. 94, 115003. doi:https://doi.org/10.1103/PhysRevLett.94.115003. http://link.aps.org/doi/10.1103/PhysRevLett.94.115003 (2005).

    Article  ADS  Google Scholar 

  17. 17.

    Geddes, C.G.R., et al. Plasma-Density-Gradient Injection of Low Absolute-Momentum- Spread Electron Bunches. Phys. Rev. Lett. 100, 215004. doi: https://doi.org/10.1103/PhysRevLett.100.215004. https://link.aps.org/doi/10.1103/PhysRevLett.100.215004 (May 2008).

    Article  ADS  Google Scholar 

  18. 18.

    Schmid, K., et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. ST Accel. Beams 13, 91301. doi:https://doi.org/10.1103/PhysRevSTAB.13.091301. https://link.aps.org/doi/10.1103/PhysRevSTAB.13.091301 (Sept. 2010).

    Article  ADS  Google Scholar 

  19. 19.

    Clayton, C.E., et al. Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection. Phys. Rev. Lett. 105, 105003. doi:https://doi.org/10.1103/PhysRevLett.105.105003. http://link.aps.org/doi/10.1103/PhysRevLett.105.105003 (2010).

    Article  ADS  Google Scholar 

  20. 20.

    Thaury, C., et al. Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 5, 16310–. doi:https://doi.org/10.1038/srep16310. http://www.nature.com/articles/srep16310http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637871/ (Oct. 2015).

    Article  ADS  Google Scholar 

  21. 21.

    Wenz, J., et al. Dual-energy electron beams from a compact laser-driven accelerator. Nat. Photonics 13, 263–269. doi:https://doi.org/10.1038/s41566-019-0356-z. http://www.nature.com/articles/s41566-019-0356-z (Apr. 2019).

    Article  ADS  Google Scholar 

  22. 22.

    Kuschel, S., et al. Controlling the Self-Injection Threshold in Laser Wakefield Accelerators. Phys. Rev. Lett. 121, 154801. doi: https://doi.org/10.1103/PhysRevLett.121.154801. https://link.aps.org/doi/10.1103/PhysRevLett.121.154801 (Oct. 2018).

    Article  ADS  Google Scholar 

  23. 23.

    Zhao, Q., et al. Ionization injection in a laser wakefield accelerator subject to a transverse magnetic field. New J. Phys. 20, 063031. doi:https://doi.org/10.1088/1367-2630/aac926. http://stacks.iop.org/1367-2630/20/i=6/a=063031?key=crossref.c14dc6c28c72a55dc177dad55fd2b21e (June 2018).

    Article  ADS  Google Scholar 

  24. 24.

    Svystun, E., Assmann, R.W., Dorda, U., Marchetti, B. & Martinez de la Ossa, A. Numerical Studies on Electron Beam Quality Optimization in a Laser-Driven Plasma Accelerator with External Injection at SINBAD for ATHENAe in Proc. 10th Int. Part. Accel. Conf. (Melbourne, Australia, 2019), THPGW023. doi:https://doi.org/10.18429/JACoW-IPAC2019-THPGW023.

  25. 25.

    Wang, K., et al. Longitudinal compression and transverse matching of electron bunch for external injection LPWA at ESCULAP. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 266–270. https://www.sciencedirect.com/science/article/pii/S0168900217313682 (Nov. 2018).

    Article  ADS  Google Scholar 

  26. 26.

    Hua, J., Wu, Y., Lu, W. External injection from a Linac into a LWFA with ~100% capture efficiency (Conference Presentation) in Laser Accel. Electrons, Protons, Ions V. (eds Esarey, E., Schroeder, C.B. & Schreiber, J. 11037 (SPIE, May, 2019), 31. doi:https://doi.org/10.1117/12.2520697. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11037/2520697/External-injection-from-a-Linac-into-a-LWFA-with-100/10.1117/12.2520697.full.

  27. 27.

    Leemans, W.P., et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Phys. Rev. Lett. 113, 245002. doi:https://doi.org/10.1103/PhysRevLett.113.245002. http://link.aps.org/doi/10.1103/PhysRevLett.113.245002 (2014).

    Article  ADS  Google Scholar 

  28. 28.

    Couperus, J., et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8, 487. doi:https://doi.org/10.1038/s41467-017-00592-7. http://www.nature.com/articles/s41467-017-00592-7 (Dec. 2017).

    Article  ADS  Google Scholar 

  29. 29.

    Islam, M.R., et al. Near-Threshold Electron Injection in the Laser-Plasma Wakefield Accelerator Leading to Femtosecond Bunches. New J. Phys. 17. doi:https://doi.org/10.1088/1367-2630/17/9/093033 (2015).

  30. 30.

    Tooley, M.P., et al. Towards Attosecond High-Energy Electron Bunches: Controlling Self- Injection in Laser-Wakefield Accelerators Through Plasma-Density Modulation. Phys. Rev. Lett. 119, 044801. doi:https://doi.org/10.1103/PhysRevLett.119.044801. http://link.aps.org/doi/10.1103/PhysRevLett.119.044801 (July 2017).

    Article  ADS  Google Scholar 

  31. 31.

    Weikum, M., Li, F., Assmann, R., Sheng, Z. & Jaroszynski, D. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 33–36. doi:https://doi.org/10.1016/J.NIMA.2016.01.003. https://www.sciencedirect.com/science/article/pii/S0168900216000061?via%3Dihub (Sept. 2016).

    Article  ADS  Google Scholar 

  32. 32.

    Wang, W.T., et al. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control. Phys. Rev. Lett. 117, 124801. doi:https://doi.org/10.1103/PhysRevLett.117.124801. https://link.aps.org/doi/10.1103/PhysRevLett.117.124801(Sept. 2016).

    Article  ADS  Google Scholar 

  33. 33.

    Brinkmann, R., et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density. Phys. Rev. Lett 118, 214801(2017).

    Article  ADS  Google Scholar 

  34. 34.

    Ferran Pousa, A., Martinez de la Ossa, A., Brinkmann, R. & Assmann, R. Compact Multistage Plasma-Based Accelerator Design for Correlated Energy Spread Compensation. Phys. Rev. Lett. 123, 054801. doi:https://doi.org/10.1103/PhysRevLett.123.054801. https://link.aps.org/doi/10.1103/PhysRevLett.123.054801 (July 2019)

    Article  ADS  Google Scholar 

  35. 35.

    Mehrling, T., Grebenyuk, J., Tsung, F.S., Floettmann, K. & Osterhoff, J. Transverse emittance growth in staged laser-wakefield acceleration. Phys. Rev. ST Accel. Beams 15, 111303. doi:https://doi.org/10.1103/PhysRevSTAB.15.111303. https://link.aps.org/doi/10.1103/PhysRevSTAB.15.111303 (Nov. 2012).

    Article  ADS  Google Scholar 

  36. 36.

    Dornmair, I., Floettmann, K. & Maier, a. R. Emittance conservation by tailored focusing profiles in a plasma accelerator. Phys. Rev. Spec. Top.-Accel. Beams 18, 1–6. doi:https://doi.org/10.1103/PhysRevSTAB.18.041302 (2015).

    Article  Google Scholar 

  37. 37.

    Xu, X.L., et al. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles. Phys. Rev. Lett. 116, 1–5. doi:https://doi.org/10.1103/PhysRevLett.116.124801 (2016).

    Google Scholar 

  38. 38.

    Van Tilborg, J., et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802. doi:https://doi.org/10.1103/PhysRevLett.115.184802. https://link.aps.org/doi/10.1103/PhysRevLett.115.184802 (Oct. 2015).

    Article  ADS  Google Scholar 

  39. 39.

    Zhang, C.J., et al. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator. Plasma Phys. Control. Fusion 60, 044013. doi:https://doi.org/10.1088/1361-6587/aaabfd. http://stacks.iop.org/0741-3335/60/i=4/a=044013?key=crossref.64defbb275912d2c3bd43e3bb163231c (Apr. 2018).

    Article  ADS  Google Scholar 

  40. 40.

    Audet, T.L., et al. Electron injector for compact staged high energy accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.. doi:https://doi.org/10.1016/j.nima.2016.01.035. http://www.sciencedirect.com/science/article/pii/S0168900216000516 (2016).

  41. 41.

    Steinke, S., et al. Staging of laser-plasma accelerators. Phys. Plasmas 23, 056705. doi:https://doi.org/10.1063/1.4948280. http://aip.scitation.org/doi/10.1063/1.4948280(May 2016).

    Article  ADS  Google Scholar 

  42. 42.

    Pathak, V.B., Kim, H.T., Vieira, J., Silva, L.O. & Nam, C.H. All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8, 11772. doi:https://doi.org/10.1038/s41598-018-30095-4. http://www.nature.com/articles/s41598-018-30095-4 (Dec. 2018).

    Article  ADS  Google Scholar 

  43. 43.

    Gonsalves, A.J., et al. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguidea). Phys. Plasmas 22, 056703. doi:https://doi.org/10.1063/1.4919278. http://scitation.aip.org/content/aip/journal/pop/22/5/10.1063/1.4919278 (May 2015).

    Article  ADS  Google Scholar 

  44. 44.

    Shalloo, R.J., et al. Hydrodynamic optical-field-ionized plasma channels. Phys. Rev. E 97, 053203. doi:https://doi.org/10.1103/PhysRevE.97.053203. https://link.aps.org/doi/10.1103/PhysRevE.97.053203 (May 2018).

    Article  ADS  Google Scholar 

  45. 45.

    Blumenfeld, I., et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744. doi:https://doi.org/10.1038/nature05538. http://www.nature.com/nature/journal/v445/n7129/full/nature05538.html (2007).

    Article  ADS  Google Scholar 

  46. 46.

    Litos, M., et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95. doi:https://doi.org/10.1038/nature13882. http://www.nature.com/articles/nature13882 (Nov. 2014).

    Article  ADS  Google Scholar 

  47. 47.

    Litos, M., et al. 9 GeV energy gain in a beam-driven plasma wakefield accelerator. Plasma Phys. Control. Fusion 58, 034017. doi:https://doi.org/10.1088/0741-3335/58/3/034017. http://stacks.iop.org/0741-3335/58/i=3/a=034017?key=crossref.62a219d7ccc3fd7f12ea5cb18a4f3d73 (Mar. 2016).

    Article  ADS  Google Scholar 

  48. 48.

    Manahan, G.G., et al. Single-Stage Plasma-Based Correlated Energy Spread Compensation for Ultrahigh 6D Brightness Electron Beams. Nat. Commun. 8, 12. doi:https://doi.org/10.1038/ncomms15705. http://www.nature.com/doinder/10.1038/ncomms15705 (2017)

    Article  Google Scholar 

  49. 49.

    Loisch, G., et al. Observation of High Transformer Ratio Plasma Wakefield Acceleration. Phys. Rev. Lett. 121, 064801. doi:https://doi.org/10.1103/PhysRevLett.121.064801. https://link.aps.org/doi/10.1103/PhysRevLett.121.064801 (Aug.2018).

    Article  ADS  Google Scholar 

  50. 50.

    Doebert, S. & al., E. (2019): The Proton Driven Advanced Wake Field Acceleration Experiment (AWAKE) at CERN in Proc. 10th Int. Part. Accel. Conf. (Melbourne, Australia, 2019), 642–646. doi:https://doi.org/10.18429/JACoW-LINAC2018-TH1A04.

  51. 51.

    Gessner, S., et al. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator. Nat. Commun. 7, 11785. doi:https://doi.org/10.1038/ncomms11785. http://www.nature.com/articles/ncomms11785 (Sept. 2016).

    Article  ADS  Google Scholar 

  52. 52.

    Corde, S., et al. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524, 442–445. doi:https://doi.org/10.1038/nature14890. http://www.nature.com/articles/nature14890 (Aug. 2015).

    Article  ADS  Google Scholar 

  53. 53.

    Martinez de la Ossa, A., Mehrling, T.J., Schaper, L., Streeter, M.J.V. & Osterhoff, J. Wakefield-induced ionization injection in beam-driven plasma accelerators. Phys. Plasmas 22, 093107. doi:https://doi.org/10.1063/1.4929921. http://aip.scitation.org/doi/10.1063/1.4929921 (Sept. 2015)

    Article  ADS  Google Scholar 

  54. 54.

    Martinez de la Ossa, A., et al. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators. Phys. Rev. Accel. Beams 20, 091301. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.091301. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.091301 (Sept. 2017).

    Article  ADS  Google Scholar 

  55. 55.

    Hidding, B., et al. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration in AIP Conf. Proc. 1507 (American Institute of Physics, Dec. 2013)570–575. doi:https://doi.org/10.1063/1.4773760. http://aip.scitation.org/doi/abs/10.1063/1.4773760.

  56. 56.

    Schlenvoigt, H.-P., et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008).

    Article  Google Scholar 

  57. 57.

    Fuchs, M., et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826–829 (2009).

    Article  Google Scholar 

  58. 58.

    Anania, M.P., et al. Transport of ultra-short electron bunches in a free-electron laser driven by a laser-plasma wakefield accelerator in SPIE Eur Opt. Optoelectron. 735916 (2009).

  59. 59.

    Lambert, G., et al. Progress on the generation of undulator radiation in the UV from a plasma-based electron beam in Proceed. FEL conf., Nara, Japan (2012), 2.

  60. 60.

    Nakajima, K. Compact X-ray sources: Towards a table-top free-electron laser. Nat. Phys. 4, 92–93(2008).

    Article  Google Scholar 

  61. 61.

    Grüner, F., et al. Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl. Phys. B 86, 431–435 (2007).

    Article  ADS  Google Scholar 

  62. 62.

    Maier, A.R., et al. Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2, 31019 (2012).

    Google Scholar 

  63. 63.

    Loulergue, A., et al. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 23028(2015).

    Article  Google Scholar 

  64. 64.

    Huang, Z., Ding, Y. & Schroeder, C.B. Compact X-ray free-electron laser from a laserplasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 1–5. doi:https://doi.org/10.1103/PhysRevLett.109.204801 (2012).

    Google Scholar 

  65. 65.

    André, T., et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 9, 1334 (2018).

    Article  ADS  Google Scholar 

  66. 66.

    Delbos, N., et al. LUX – A laser–plasma driven undulator beamline. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip (2018).

  67. 67.

    Bernhard, A., et al. Progress on experiments towards LWFA-driven transverse gradient undulator-based FELs. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 391–397 (2018).

    Article  ADS  Google Scholar 

  68. 68.

    Cole, J.M., et al. High-resolution mCT of a mouse embryo using a compact laser-driven X-ray betatron source. Proc. Natl. Acad. Sci. 115, 6335–6340. doi:https://doi.org/10.1073/PNAS.1802314115. https://www.pnas.org/content/115/25/6335#sec-6 (June 2018).

    Article  ADS  Google Scholar 

  69. 69.

    Döpp, A., et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light Sci. Appl. 6, e17086–e17086. doi:https://doi.org/10.1038/lsa.2017.86. http://www.nature.com/articles/lsa201786 (Nov. 2017).

    Article  Google Scholar 

  70. 70.

    Kneip, S., et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980–983. doi:https://doi.org/10.1038/nphys1789. http://www.nature.com/articles/nphys1789 (Dec. 2010).

    Article  Google Scholar 

  71. 71.

    Cipiccia, S., et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871. doi:https://doi.org/10.1038/nphys2090. http://www.nature.com/articles/nphys2090 (Nov. 2011).

    Article  Google Scholar 

  72. 72.

    Albert, F., et al. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. Phys. Rev. Lett. 118, 134801. doi:https://doi.org/10.1103/PhysRevLett.118.134801. http://link.aps.org/doi/10.1103/PhysRevLett.118.134801 (Mar. 2017).

    Article  ADS  Google Scholar 

  73. 73.

    Guo, B., et al. Generation of Coherent Monochromatic Betatron Radiation by Laser-triggered Ionization Injection in Plasma Accelerators. in 2018 IEEE Adv. Accel. Concepts Work. (IEEE, Aug. 2018), 1–4. doi:https://doi.org/10.1109/AAC.2018.8659443. https://ieeexplore.ieee.org/document/8659443/.

  74. 74.

    Kneip, S., et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99, 093701. doi:https://doi.org/10.1063/1.3627216. http://aip.scitation.org/doi/10.1063/1.3627216 (Aug. 2011).

    Article  ADS  Google Scholar 

  75. 75.

    Cole, J.M., et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 5, 13244. doi:https://doi.org/10.1038/srep13244. http://www.nature.com/articles/srep13244 (Oct. 2015).

    Article  ADS  Google Scholar 

  76. 76.

    Schwoerer, H., Liesfeld, B., Schlenvoigt, H.-P., Amthor, K.-U. & Sauerbrey, R. Thomson- Backscattered X Rays From Laser-Accelerated Electrons. Phys. Rev. Lett. 96, 014802. doi:https://doi.org/10.1103/PhysRevLett.96.014802. https://link.aps.org/doi/10.1103/PhysRevLett.96.014802 (Jan. 2006).

    Article  ADS  Google Scholar 

  77. 77.

    Chen, S., et al. MeV-Energy X Rays from Inverse Compton Scattering with Laser-Wakefield Accelerated Electrons. Phys. Rev. Lett. 110, 155003. doi:https://doi.org/10.1103/PhysRevLett.110.155003. https://link.aps.org/doi/10.1103/PhysRevLett.110.155003 (Apr. 2013).

    Article  ADS  Google Scholar 

  78. 78.

    Yu, C., et al. Ultrahigh brilliance quasi-monochromatic MeV g-rays based on selfsynchronized all-optical Compton scattering. Sci. Rep. 6, 29518. doi:https://doi.org/10.1038/srep29518. http://www.nature.com/articles/srep29518 (Sept. 2016).

    Article  ADS  Google Scholar 

  79. 79.

    Geddes, C.G.R., et al. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization. Nucl. Instrum. Meth. B 350, 116–121. doi:https://doi.org/10.1016/j.nimb.2015.01.013. http://www.sciencedirect.com/science/article/pii/S0168583X15000269 (2015).

    Article  ADS  Google Scholar 

  80. 80.

    DesRosiers, C., Moskvin, V., Cao, M., Joshi, C.J. & Langer, M. Laser-plasma generated very high energy electrons in radiation therapy of the prostate in (eds Neev, J., Nolte, S., Heisterkamp, A. & Schaffer, C. B.) 6881 (International Society for Optics and Photonics, Feb. 2008), 688109. doi:https://doi.org/10.1117/12.761663. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.761663.

  81. 81.

    Nicolai, M., et al. Realizing a laser-driven electron source applicable for radiobiological tumor irradiation. Appl. Phys. B 116, 643–651. doi:https://doi.org/10.1007/s00340-013-5747-0. http://link.springer.com/10.1007/s00340-013-5747-0 (Sept. 2014).

    Article  ADS  Google Scholar 

  82. 82.

    Chiu, C., et al. Laser electron accelerators for radiation medicine: A feasibility study. Med. Phys. 31, 2042–2052. doi:https://doi.org/10.1118/1.1739301. http://doi.wiley.com/10.1118/1.1739301 (June 2004).

    Article  Google Scholar 

  83. 83.

    Schroeder, C.B., Esarey, E., Geddes, C.G.R., Benedetti, C. & Leemans, W.P. Physics considerations for laser-plasma linear colliders. Phys. Rev. Spec. Top.-Accel. Beams 13, 101301. doi:https://doi.org/10.1103/PhysRevSTAB.13.101301. https://link.aps.org/doi/10.1103/PhysRevSTAB.13.101301 (Oct. 2010).

    Article  ADS  Google Scholar 

  84. 84.

    Schroeder, C., Benedetti, C., Esarey, E. & Leemans, W. Laser-plasma-based linear collider using hollow plasma channels. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 113–116. doi:https://doi.org/10.1016/J.NIMA.2016.03.001. https://www.sciencedirect.com/science/article/pii/S0168900216002667?via%3Dihub (Sept. 2016)

    Article  ADS  Google Scholar 

  85. 85.

    European Commission. Open innovation, open science, open to the world-EU Law and Publications https://ec.europa.eu/digital- single- market/en/news/open-innovation-open-science-open-world-vision-europe (2016).

  86. 86.

    LBG OIS Center. Why Open Innovation in Science? 2019. https://ois.lbg.ac.at/en/about/mission-history (2019).

  87. 87.

    OpenInnovation.eu. Open Innovation-What is Open Innovation? 2019. https://www.openinnovation.eu/open-innovation/ (2019).

  88. 88.

    Research England. Research and knowledge exchange funding for 2019-20 tech. rep. (2019), RE–P–2019–05. https://re.ukri.org/documents/finance/2019-20-funding-allocations/research-and-knowledge-exchange-funding-for-2019-20/.

  89. 89.

    European Commission. European Cloud Initiative - Building a competitive data and knowledge economy in Europe tech. rep. (2016), COM(2016) 178. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0178&from=EN.

  90. 90.

    Weikum, M.K., et al. Status of the Horizon 2020 EuPRAXIA conceptual design study. J. Phys. Conf. Ser. 1350, doi:https://doi.org/10.1088/1742-6596/1350/1/012059 (Dec. 2019).

  91. 91.

    Argyropoulos, T., et al. Design, fabrication, and high-gradient testing of an X -band, travelingwave accelerating structure milled from copper halves. Phys. Rev. Accel. Beams 21, 061001. doi:https://doi.org/10.1103/PhysRevAccelBeams.21.061001. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061001 (June 2018).

    Article  ADS  Google Scholar 

  92. 92.

    Gizzi, L.A., et al. A Viable Laser Driver for a User Plasma Accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 58–66. doi:https://doi.org/10.1016/j.nima.2018.02.089. https://linkinghub.elsevier.com/retrieve/pii/S0168900218302717(Nov. 2018).

    Article  ADS  Google Scholar 

  93. 93.

    Nanni, E.A., et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486. doi:https://doi.org/10.1038/ncomms9486. http://www.nature.com/articles/ncomms9486 (Dec. 2015).

    Article  ADS  Google Scholar 

  94. 94.

    Peralta, E.A., et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94. doi:https://doi.org/10.1038/nature12664. http://www.nature.com/articles/nature12664 (Nov. 2013).

    Article  ADS  Google Scholar 

  95. 95.

    Korn, G. Future perspectives of ELI Beamlines Hamburg, Germany, 2018. https://ard.desy.de/sites2009/site_ard/content/e157650/e271962/GeorgKorn_ELI.pdf

  96. 96.

    Office of High Energy Physics, Office of Science & U.S. Department of Energy. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory tech. rep. (2015), SLAC–R–1067. http://slac.stanford.edu/pubs/slacreports/reports21/slac-r-1067.pdf

  97. 97.

    SLAC National Accelerator Laboratory. Facility for Advanced Accelerator Experimental Tests (FACET)-Proposals Overview 2019. https://facet.slac.stanford.edu/proposals (2019),

  98. 98.

    Dorda, U. SINBAD-Status & Plans in Beschleuniger-Betriebsseminar 2019 (Travemuende, Germany, 2019)https://indico.desy.de/indico/event/21928/session/5/contribution/1/material/slides/0.pdf

  99. 99.

    Deutsches Elektronensynchrotron DESY. FLASHFORWARD-Experimental Proposals 2018. https://forward.desy.de/experimental_proposals/ (2019),

  100. 100.

    Vaccarezza, C. The SPARC_LAB Thomson Source in Eur. Adv. Accel. Concepts Work. (Elba, Italy, 2015). https://agenda.infn.it/event/8146/contributions/71629/attachments/51945/61358/The_SPARC_LAB_Thomson_SOURCE.pptx.

  101. 101.

    CERN. CLEAR-Beam Line Description https://clear.web.cern.ch/content/beam- line-description (2019).

  102. 102.

    Ferran Pousa, A., Aßmann, R. & Martinez de la Ossa, A. VisualPIC: a new data visualizer and post-processor for particle-in-cell codes. Proc. IPAC 2017, 1696–1698. doi:https://doi.org/10.18429/JACOW-IPAC2017-TUPIK007. http://jacow.org/ipac2017/doi/JACoW-IPAC2017-TUPIK007.html (2017).

  103. 103.

    Rocca, J.J., et al. in Free Electron Lasers 2002 515–522 (Elsevier, 2003).

  104. 104.

    McPherson, A., et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  105. 105.

    Ferray, M., et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 21, L31 (1988).

    Article  Google Scholar 

  106. 106.

    Paul, P.M., et al. Observation of a train of attosecond pulses from high harmonic generation. Science (80-.). 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  107. 107.

    Dromey, B., et al. High harmonic generation in the relativistic limit. Nat. Phys. 2, 456 (2006).

    Article  Google Scholar 

  108. 108.

    Couprie, M.-E. & Filhol, J.-M. (2008): X radiation sources based on accelerators. Comptes Rendus Phys. 9, 487–506.

    Article  ADS  Google Scholar 

  109. 109.

    Couprie, M.E. New generation of light sources: present and future. J. Electron Spectros. Relat. Phenomena 196, 3–13 (2014).

    Article  Google Scholar 

  110. 110.

    Couprie, M.E. Short wavelength free-electron laser sources. Comptes Rendus l’Académie des Sci. IV-Physics 1, 329–345 (2000).

    ADS  Google Scholar 

  111. 111.

    Madey, J.M.J. Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field. J. Appl. Phys. 42, 1906–1913. doi:https://doi.org/10.1063/1.1660466. https://doi.org/10.1063/1.1660466 (1971).

    Article  ADS  Google Scholar 

  112. 112.

    Schawlow, A.L. & Townes, C.H. Infrared and optical masers. Phys. Rev. 112, 1940 (1958).

    Article  ADS  Google Scholar 

  113. 113.

    Maimain, T. Stimulated optical radiation in Ruby. Nature 187, 493–494 (1960).

    Article  ADS  Google Scholar 

  114. 114.

    Deacon, D.A.G., et al. First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977).

    Article  ADS  Google Scholar 

  115. 115.

    Emma, P., et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647. doi:https://doi.org/10.1038/nphoton.2010.176. http://www.nature.com/doifinder/10.1038/nphoton.2010.176 (2010).

    Article  ADS  Google Scholar 

  116. 116.

    Ishikawa, T., et al. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  117. 117.

    Kang, H.-S., et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708 (2017).

    Article  ADS  Google Scholar 

  118. 118.

    Milne, C.J., et al. SwissFEL: The Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017).

    Article  Google Scholar 

  119. 119.

    Weise, H. & Decking, W. Commissioning and first lasing of the European XFEL in Proc. FEL2017, St. Fe, NM, USA (2017).

  120. 120.

    Ackermann, W., et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  121. 121.

    Allaria, E., et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699–704 (2012).

    Article  ADS  Google Scholar 

  122. 122.

    Wang, G. Commissioning Status of the Dalian Cohernet Light Source. in 8th Int. Part. Accel. Conf.(IPAC’17), Copenhagen, Denmark, 14–19 May, 2017 (2017), 2709–2712.

  123. 123.

    McNeil, B. Free electron lasers: First light from hard X-ray laser. Nat. Photonics 3, 375–377 (2009).

    Article  ADS  Google Scholar 

  124. 124.

    Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 15006 (2016).

    Article  ADS  Google Scholar 

  125. 125.

    Bostedt, C., et al. Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 15007 (2016).

    Article  Google Scholar 

  126. 126.

    Chapman, H.N., et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    Article  ADS  Google Scholar 

  127. 127.

    Seibert, M.M., et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011).

    Article  ADS  Google Scholar 

  128. 128.

    Kirian, R.A., et al. Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr. Sect. A Found. Crystallogr. 67, 131–140 (2011).

    Article  ADS  Google Scholar 

  129. 129.

    Young, L., et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    Article  ADS  Google Scholar 

  130. 130.

    Berrah, N., et al. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs). J. Mod. Opt. 57, 1015–1040 (2010).

    Article  ADS  Google Scholar 

  131. 131.

    Doumy, G., et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 83002–83006 (2011).

    Article  ADS  Google Scholar 

  132. 132.

    Richter, M., Bobashev, S.V., Sorokin, A.A. & Tiedtke, K. Multiphoton ionization of atoms with soft X-ray pulses. J. Phys. B At. Mol. Opt. Phys. 43, 194005–194012 (2010).

    Article  ADS  Google Scholar 

  133. 133.

    Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Article  Google Scholar 

  134. 134.

    Meyer, M., Costello, J.T., Düsterer, S., Li, W.B. & Radcliffe, P. Two-colour experiments in the gas phase. J. Phys. B At. Mol. Opt. Phys. 43, 194006–194015 (2010).

    Article  ADS  Google Scholar 

  135. 135.

    Günther, C.M., et al. Sequential femtosecond X-ray imaging. Nat. Photonics 5, 99–102 (2011).

    Article  ADS  Google Scholar 

  136. 136.

    Roy, S., et al. Lensless X-ray imaging in reflection geometry. Nat. Photonics 5, 243–245 (2011).

    Article  ADS  Google Scholar 

  137. 137.

    Glownia, J.M., et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).

    Article  ADS  Google Scholar 

  138. 138.

    Galtier, E., et al. Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20 #fs microfocused 92 #eV free-electron-laser pulses. Phys. Rev. Lett. 106, 164801–164806 (2011).

    Article  ADS  Google Scholar 

  139. 139.

    Molodozhentsev, A. & Pribyl, L. Progress on the generation of undulator radiation in the UV from a plasma-based electron beam in Proc. IPAC2016, Busan, Korea (2016), 4005–4007.

  140. 140.

    Marteau, F., et al. Variable high gradient permanent magnet quadrupole (QUAPEVA). Appl. Phys. Lett. 111, 253503 (2017).

    Article  ADS  Google Scholar 

  141. 141.

    Couprie, M.-E., Loulergue, A., Labat, M., Lehe, R. & Malka, V. Towards a free electron laser based on laser plasma accelerators. J. Phys. B At. Mol. Opt. Phys. 47, 234001 (2014).

    Article  ADS  Google Scholar 

  142. 142.

    ALEGRO Collaboration. Towards an Advanced Linear International Collider 2019. https://arxiv.org/abs/1901.10370.

  143. 143.

    Liu, J.S., et al. All-Optical Cascaded Laser Wakefield Accelerator Using Ionization-Induced Injection. Phys. Rev. Lett. 107, 35001. doi:https://doi.org/10.1103/PhysRevLett.107.035001. http://link.aps.org/doi/10.1103/PhysRevLett.107.035001(2011).

    Article  ADS  Google Scholar 

  144. 144.

    U.S. Department of Energy-Office of Science. Advanced Accelerator Development Strategy Report in DOE Adv. Accel. Concepts Res. Roadmap Work. Febr. 2 – 3, 2016 (2016).

  145. 145.

    PWASC. Plasma wakefield accelerator steering committee 2019. http://pwasc.org.uk/ (2019).

  146. 146.

    Hogan, M.J., et al. Plasma wakefield acceleration experiments at FACET. New J. Phys. 12, 055030. doi:https://doi.org/10.1088/1367-2630/12/5/055030. http://stacks.iop.org/1367-2630/12/i=5/a=055030?key=crossref.72f665d9f313301607de16ff3f559a55 (May 2010).

    Article  ADS  Google Scholar 

  147. 147.

    U.S. Department of Energy. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory tech. rep. (SLAC National Accelerator Laboratory, 2016), SLAC–R–1072.

  148. 148.

    Alejo, A., Walczak, R. & Sarri, G. Laser-driven high-quality positron sources as possible injectors for plasma-based accelerators. Sci. Rep. 9, 5279. doi:https://doi.org/10.1038/s41598-019-41650-y. http://www.nature.com/articles/10.1038/s41598-019-41650-y (Dec. 2019)

    Article  ADS  Google Scholar 

  149. 149.

    Keeble, D.J., et al. Identification of A-and B -Site Cation Vacancy Defects in Perovskite Oxide Thin Films. Phys. Rev. Lett. 105, 226102. doi:https://doi.org/10.1103/PhysRevLett.105.226102. https://link.aps.org/doi/10.1103/PhysRevLett.105.226102 (Nov. 2010).

    Article  ADS  Google Scholar 

  150. 150.

    Helmholtz-Zentrum Dresden-Rossendorf. Positronen-Annihilations-Spektroskopie am HZDR 2018. https://www.hzdr.de/db/Cms?pNid=3225 (2019).

  151. 151.

    Helmholtz-Zentrum Dresden-Rossendorf. The Slow-Positron System of Rossendorf-SPONSOR 2019. https://www.hzdr.de/db/Cms?pOid=35320&pNid=3225 (2019).

  152. 152.

    Heinz Maier-Leibnitz-Zentrum. NEPOMUC-Neutron induced positron source Munich 2019. https://www.mlz-garching.de/nepomuc.

  153. 153.

    Heinz Maier-Leibnitz-Zentrum. PLEPS-Pulsed low energy positron system 2019. https://www.mlz-garching.de/pleps..

  154. 154.

    Sarri, G., et al. Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams. Phys. Rev. Lett. 110, 255002. doi:https://doi.org/10.1103/PhysRevLett.110.255002. https://link.aps.org/doi/10.1103/PhysRevLett.110.255002 (June 2013).

    Article  ADS  Google Scholar 

  155. 155.

    Sarri, G., et al. Spectral and spatial characterisation of laser-driven positron beams. Plasma Phys. Control. Fusion 59, 014015. doi:https://doi.org/10.1088/0741-3335/59/1/014015. http://stacks.iop.org/0741-3335/59/i=1/a=014015?key=crossref.5e376211abe22b4718389b5279783e9e (Jan. 2017).

    Article  ADS  Google Scholar 

  156. 156.

    Sarri, G., et al. Overview of laser-driven generation of electron–positron beams. J. Plasma Phys. 81, 455810401. doi:https://doi.org/10.1017/S002237781500046X. https://www.cambridge.org/core/product/identifier/S002237781500046X/type/journal_article (Aug. 2015)

    Article  Google Scholar 

  157. 157.

    Deutsches Elektronensychrotron-DESY. FLASH http://photon-science.desy.de/facilities/flash/index_eng.html.

  158. 158.

    SwissFEL Collaboration. SwissFEL Conceptual Design Report tech. rep. (). https://www.psi.ch/sites/default/files/import/swissfel_old/CurrentSwissFELPublicationsEN/SwissFEL_CDR_V20_23.04.1

  159. 159.

    Wilkinson, M.D., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018. doi:https://doi.org/10.1038/sdata.2016.18. http://www.nature.com/articles/sdata201618 (Dec. 2016).

    Article  Google Scholar 

  160. 160.

    e-Infrastructure Reflection Group. e-IRG Roadmap 2016 tech. rep. (2016), Version 5.3. http://e-irg.eu/documents/10920/12353/Roadmap+2016.pdf.

  161. 161.

    UK Data Service. The ‘FAIR’ principles for scientific data management. https://www.ukdataservice.ac.uk/news-and-events/newsitem/?id=4615 (June 2016).

  162. 162.

    Alesini, D., Anania, M.P., Artioli, M. & Bacci, A. EuPRAXIA@SPARCLAB Conceptual Design Report tech. rep. LNF-1803 (Instituto Nazionale di Fisica Nuclear INFN, 2018). http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-18-03-LNF.pdf.

  163. 163.

    Ferrario, M., et al. EuPRAXIA@ SPARC_LAB Design study towards a compact FEL facility at LNF. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 134–138 (2018).

    Article  ADS  Google Scholar 

  164. 164.

    Wuensch, W. Advances in High Gradient Accelerating Structures and in the Understanding Gradient Limits in Proc. Int. Part. Accel. Conf. IPAC 17 (2017).

  165. 165.

    Bisesto, F.G., et al. The FLAME laser at SPARC_LAB. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 452–455 (2018).

    Article  ADS  Google Scholar 

  166. 166.

    Institut Curie. Institut Curie – Recombination, Repair and Cancer: Team Dutreix https://science.institut-curie.org/research/biology-chemistry-of-radiations-cell-signaling-and-cancer-axis/umr-3347-normal-and-pathological-signaling/team-dutreix/

  167. 167.

    Derouillat, J., et al. SMILEI: A Collaborative, Open-Source, Multi-Purpose Particle-in-Cell Code for Plasma Simulation 222, 351–373. doi:https://doi.org/10.1016/j.cpc.2017.09.024. http://arxiv.org/abs/1702.05128.

  168. 168.

    Intense Laser Irradiation Laboratory. Laboratorio di Laser Intensi – Istituto Nazionale di Ottica – Consiglio Nazionale delle Ricerche 2019. http://research.ino.it/Groups/ilil/it/about_it/ (2019).

  169. 169.

    Gizzi, L.A., et al. Laser-Plasma Acceleration: First Experimental Results from the Plasmon- X Project in Charg. Neutral Part. Channeling Phenom. (WORLD SCIENTIFIC, Apr. 2010), 485–501. doi:https://doi.org/10.1142/9789814307017_0045. http://www.worldscientific.com/doi/abs/10.1142/9789814307017_0045.

  170. 170.

    Tomassini, P., et al. The resonant multi-pulse ionization injection. Phys. Plasmas 24, 103120. doi:https://doi.org/10.1063/1.5000696. http://aip.scitation.org/doi/10.1063/1.5000696 (Oct. 2017).

    Article  ADS  Google Scholar 

  171. 171.

    Nghiem, P.A., et al. A Step Toward A Plasma-Wakefield Based Accelerator with High Beam Quality. J. Phys. Conf. Ser.. 1350. doi:https://doi.org/10.1088/1742-6596/1350/1/012068 (2019).

  172. 172.

    Rossi, A., et al. A concept for an active plasma undulator in Eur. Adv. Accel. Concepts Work (Elba, Italy, 2019).

  173. 173.

    European Commission. HORIZON2020-Work Programme 2018–2020: Technical Readiness Levels (TRL) tech. rep. (2017), C(2017)7124. https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820- annex-g-trl_en.pdf.

  174. 174.

    Particle Physics Project Prioritization Panel (P5). .uilding for Discovery – Strategic Plan for U.S. Particle Physics in the Global Context tech. rep (2014), http://inspirehep.net/record/1299183/files/FINAL_P5_Report_053014.pdf.

  175. 175.

    Ellis, R. & al., E. Physics Briefing Book: European Strategy for Particle Physics Preparatory Group tech. rep. (CERN, Geneva, Switzerland, 2019), CERN–ESU–004. http://cds.cern.ch/record/2691414/files/Briefing_Book_Final.pdf.

  176. 176.

    League of European Accelerator-based Photon Sources (LEAPS) LEAPS Strategy 2030 tech. rep. (2018). https://www.leaps-initiative.eu/sites/sites_custom/site_leaps-initiative/content/e49102/e65282/e65283/LEAPS_Strategy2030_180611.pdf.

  177. 177.

    Hidding, B. et al. Plasma Wakefield Accelerator Research 2019-2040: A communitydriven UK roadmap compiled by the Plasma Wakefield Accelerator Steering Committee (PWASC) 2019. https://www.researchgate.net/publication/332553759_Plasma_Wakefield_Accelerator_Research_2019_-_2040_A_community-driven_UK_roadmap_compiled_by_the_Plasma_Wakefield_Accelerator_Steering_Committee_PWASC

  178. 178.

    European Network for Novel Accelerators. A European Roadmap tech. rep. (2017). (published as EU EuCARD2 deliverable report). https://edms.cern.ch/ui/file/1325207/2/EuCARD2_Del7-2-Final.pdf.

  179. 179.

    Cros, B., Muggli, P. & (on behalf of the ALEGRO collaboration). ALEGRO input for the 2020 update of the European Strategy 2019. https://arxiv.org/abs/1901.08436

  180. 180.

    Esarey, E., Schroeder, C.B. & Leemans, W.P. Physics of laser–driven plasma–based electron accelerators. Rev. Mod. Phys. 81, 1229–1285. doi:https://doi.org/10.1103/RevModPhys.81.1229 (2009).

    Article  ADS  Google Scholar 

  181. 181.

    Steinke, S., et al. Multistage coupling of independent laser–plasma accelerators. Nature 530, 190–193. doi:https://doi.org/10.1038/nature16525. http://www.nature.com/articles/nature16525 (Feb. 2016).

    Article  ADS  Google Scholar 

  182. 182.

    Nakajima, K. Seamless multistage laser–plasma acceleration toward future high–energy colliders. Light Sci. Appl. 7 (2018).

  183. 183.

    Cros, B., et al. Laser plasma acceleration of electrons with multi–PW laser beams in the frame of CILEX. Nucl. Instr. Meth. Phys. Res., Sect. A 740, 27–33. doi:https://doi.org/10.1016/j.nima.2013.10.090 (2014).

    Article  ADS  Google Scholar 

  184. 184.

    Leemans, W.P., et al. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator. AIP Conf. Proc. 1299 (2010).

  185. 185.

    Lu, W., et al. Generating multi–GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 61301. doi:https://doi.org/10.1103/PhysRevSTAB.10.061301. http://link.aps.org/doi/10.1103/PhysRevSTAB.10.061301 (June 2007).

    Article  ADS  Google Scholar 

  186. 186.

    Lu, W., Huang, C., Zhou, M., Mori, W.B. & Katsouleas, T. Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime. Phys. Rev. Lett. 96, 165002. doi:https://doi.org/10.1103/PhysRevLett.96.165002. https://link.aps.org/doi/10.1103/PhysRevLett.96.165002 (Apr. 2006).

    Article  ADS  Google Scholar 

  187. 187.

    Bane, K., Wilson, P. & Weiland, T. Wake fields and wake field acceleration tech. rep. (Stanford Linear Accelerator Center, 1984), SLAC–PUB–3528.

  188. 188.

    Katsouleas, T. Physical mechanisms in the plasma wake–field accelerator. Phys. Rev. A 33, 2056–2064. doi:https://doi.org/10.1103/PhysRevA.33.2056. http://link.aps.org/doi/10.1103/PhysRevA.33.2056 (Mar. 1986).

    Article  ADS  Google Scholar 

  189. 189.

    Chen, P., Su, J.J., Dawson, J.M., Bane, K.L.F. & Wilson, P.B. Energy Transfer in the Plasma Wake-Field Accelerator. Phys. Rev. Lett. 56, 1252–1255. doi:https://doi.org/10.1103/PhysRevLett.56.1252. https://link.aps.org/doi/10.1103/PhysRevLett.56.1252 (Mar. 1986).

    Article  ADS  Google Scholar 

  190. 190.

    Bane, K.L.F., Chen, P. & Wilson, P.B. On Collinear Wake Field Acceleration. IEEE Trans. Nucl. Sci. 32, 3524–3526. doi:https://doi.org/10.1109/TNS.1985.4334416. http://ieeexplore.ieee.org/document/4334416/ (Oct. 1985).

    Article  ADS  Google Scholar 

  191. 191.

    Jiang, B., Jing, C., Schoessow, P., Power, J. & Gai, W. Formation of a novel shaped bunch to enhance transformer ratio in collinear wakefield accelerators. Phys. Rev. Spec. Top.–Accel. Beams 15, 011301.doi:https://doi.org/10.1103/PhysRevSTAB.15.011301. https://link.aps.org/doi/10.1103/PhysRevSTAB.15.011301 (Jan. 2012).

    Article  ADS  Google Scholar 

  192. 192.

    Tsakanov, V.M. On collinear wake field acceleration with high transformer ratio. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 432, 202–213 (1999).

    Article  ADS  Google Scholar 

  193. 193.

    Van der Meer, S. Improving the power efficiency of the plasma wakefield accelerator tech. rep. CERN–PS–85–65–AA; CLIC–Note–3 (CERN, Geneva1985), CERN–PS–85–65–AA, CLIC–Note–3.

  194. 194.

    Floettmann, K. Some basic features of the beam emittance. Phys. Rev. Spec. Top.–Accel. Beams 6. doi:https://doi.org/10.1103/PhysRevSTAB.6.034202 (2003).

  195. 195.

    Courant, E.D. & Snyder, H.S. Theory of the Alternating-Gradient Synchrotron. An. Phys. 3 (1958).

  196. 196.

    Rittershofer, W., Schroeder, C.B., Esarey, E., Grüner, F.J. & Leemans, W.P. Tapered plasma channels to phase–lock accelerating and focusing forces in laser–plasma accelerators. Phys. Plasmas 17, 63104. doi:https://doi.org/10.1063/1.3430638. https://doi.org/10.1063/1.3430638 (June 2010).

    Article  Google Scholar 

  197. 197.

    Desforges, F.G., et al. Reproducibility of electron beams from laser wakefield acceleration in capillary tubes. Nucl. Instrum. Meth. A 740, 54–59. doi:https://doi.org/10.1016/j.nima.2013.10.062. http://www.sciencedirect.com/science/article/pii/S0168900213014538 (2013).

    Article  ADS  Google Scholar 

  198. 198.

    Desforges, F.G. Injection induite par ionisation pour l’accélération laser–plasma dans des tubes capillaires diélectriques. PhD thesis(Université Paris–Sud, 2015).

  199. 199.

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. 56, 219–221 (1985).

    Google Scholar 

  200. 200.

    Heyl, C.M., Arnold, C.L., Couairon, A. & L’Huillier, A. Introduction to macroscopic power scaling principles for high–order harmonic generation. J. Phys. B At. Mol. Opt. Phys. 50, 013001doi:https://doi.org/10.1088/1361-6455/50/1/013001. http://stacks.iop.org/0953–4075/50/i=1/a=013001?key=crossref.7fde8adcd056897664c8553591f789d8 (Jan. 2017).

    Article  ADS  Google Scholar 

  201. 201.

    Giambruno, F., Radier, C., Rey, G. & Chériaux, G. Design of a 10PW (150J/15fs) peak power laser system with Ti:sapphire medium through spectral control. Appl. Opt. 50, 2617–2621. doi:https://doi.org/10.1364/AO.50.002617. http://ao.osa.org/abstract.cfm?URI=ao-50-17-2617 (2011)

    Article  ADS  Google Scholar 

  202. 202.

    Ros, D., et al. LASERIX : A Multi X–Ray/XUV Beamline High Repetition–Rate Facility. X–Ray Lasers 2006, Springer, Dordr. (2007).

  203. 203.

    Leemans, W.P., et al. (2013): Bella Laser and Operations in Proc. PAC2013, Pasadena, CA USA (2013), THYAA1.

  204. 204.

    Lee, S.K., Sung, H.J., Lee, H.W., Yoo, J.Y. & Nam, C.H. Extreme light at CoReLSand its application to single cycle pulse generation. https://indico.cern.ch/event/531896/contributions/2223472/attachments/1328915/1996120/LEE_SK.pdf.

  205. 205.

    Wang, Z., et al. High–contrast 1.16 PW Ti: sapphire laser system combined with a doubled chirped–pulse amplification scheme and a femtosecond optical–parametric amplifier. Opt. Lett. 36, 3194–3196 (2011).

    Article  ADS  Google Scholar 

  206. 206.

    Keppler, S., et al. Full characterization of the amplified spontaneous emission from a diodepumped high–power laser system. Opt. Express 22, 11228–11235 (2014).

    Article  ADS  Google Scholar 

  207. 207.

    Siebold, M., Roeser, F., Loeser, M., Albach, D. & Schramm, U. PEnELOPE–a high peak–power diode–pumped laser system for laser–plasma experiments in High–Power, High– Energy, High–Intensity Laser Technol. Res. Using Extrem. Light Enter. New Front. with Petawatt–Class Lasers, Proc. SPIE Vol. 8780 (2013), 878005.

    Article  Google Scholar 

  208. 208.

    Liebetrau, H., et al. Ultra–high contrast frontend for high peak power fs–lasers at 1030 nm. Opt. Express 22, 24776–24786 (2014).

    Article  ADS  Google Scholar 

  209. 209.

    Gaul, E., et al. Improved pulse contrast on the Texas Petawatt Laser in. J. Phys. Conf. Ser. 717, 12092 (2016).

    Article  Google Scholar 

  210. 210.

    Ross, I.N., et al. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Appl. Opt. 39, 2422–2427 (2000).

    Article  ADS  Google Scholar 

  211. 211.

    Dubietis, A., Butkus, Rytis & Algis, P.P. Trends in Chirped Pulse Optical Parametric Amplification. IEEE J. Sel Top. Quantum Electron. 12, 163–172 (2006).

    Article  ADS  Google Scholar 

  212. 212.

    Xie, X., et al. Multi petawatt laser design for the SHENGUANG II laser facility in High–Power, High–Energy, High–Intensity Laser Technol. II 9513 (2015), 95130A.

    Google Scholar 

  213. 213.

    Danson, C., Hillier, D., Hopps, N. & Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3, e3 (2015).

    Article  Google Scholar 

  214. 214.

    McNeil, B.W.J. & Thompson, N.R. X-Ray Free-Electron Lasers. Nat. Photonics 4, 814–821. doi:https://doi.org/10.1038/nphoton.2010.239. http://www.nature.com/doifinder/10.1038/nphoton.2010.239 (2010).

    Article  ADS  Google Scholar 

  215. 215.

    Haus, H. Noise in free–electron laser amplifier. IEEE J. Quantum Electron. 17, 1427–1435 (1981).

    Article  ADS  Google Scholar 

  216. 216.

    Dattoli, G., Marino, A., Renieri, A. & Romanelli, F. Progress in the Hamiltonian picture of the free–electron laser. IEEE J. Quantum Electron. 17, 1371–1387 (1981).

    Article  ADS  Google Scholar 

  217. 217.

    Bonifacio, R., Pellegrini, C. & Narducci, L.M. Collective instabilities and high–gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  218. 218.

    Kim, K.-J. An analysis of self–amplified spontaneous emission. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 250, 396–403 (1986).

    Article  ADS  Google Scholar 

  219. 219.

    Dattoli, G., Ottaviani, P.L. & Pagnutti, S. Booklet for FEL design: a collection of practical formulae. Ed. Sci. Frascati (2007).

  220. 220.

    Walker, P.A., et al. EuPRAXIA Deliverable Report 1.2 Report defining preliminary study concept 2016.

  221. 221.

    Toci, G., et al. EuPRAXIA Deliverable Report: D4.1 Benchmarking of existing technology and comparison with the requirements tech. rep (EuPRAXIA, 2016).

  222. 222.

    Nagymihaly, R.S., et al. Liquid–cooled Ti: Sapphire thin disk amplifiers for high average power 100–TW systems. Opt. Express 25, 6664. doi:https://doi.org/10.1364/OE.25.006664. https://www.osapublishing.org/abstract.cfm?URI=oe-25-6-6664 (Mar. 2017).

    Article  ADS  Google Scholar 

  223. 223.

    Chvykov, V., Nagymihaly, R.S., Cao, H., Kalashnikov, M. & Osvay, K. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti: Sa systems (EDP–TD). Opt. Express 24, 3721. doi:https://doi.org/10.1364/OE.24.003721. https://www.osapublishing.org/abstract.cfm?URI=oe-24-4-3721 (Feb. 2016).

    Article  ADS  Google Scholar 

  224. 224.

    Chu, Y., et al. High–contrast 20 Petawatt Ti:sapphire laser system. Opt. Express 21, 29231. doi:https://doi.org/10.1364/OE.21.029231. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-24-29231 (Dec. 2013).

    Article  ADS  Google Scholar 

  225. 225.

    Gizzi, L., et al. A viable laser driver for a user plasma accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 58–66. doi:https://doi.org/10.1016/J.NIMA.2018.02.089. https://www.sciencedirect.com/science/article/pii/S0168900218302717?via%3Dihub (Nov. 2018).

    Article  ADS  Google Scholar 

  226. 226.

    Morice, O. Miro: Complete modeling and software for pulse amplification and propagation in high–power laser systems. Opt. Eng. 42, 1530. doi:https://doi.org/10.1117/1.1574326. http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.1574326 (June 2003).

    Article  ADS  Google Scholar 

  227. 227.

    Gizzi, L., et al. A New Line for Laser-Driven Light Ions Acceleration and Related TNSA Studies. Appl. Sci. 7, 984. doi:https://doi.org/10.3390/app7100984. http://www.mdpi.com/2076-3417/7/10/984 (Sept. 2017).

    Article  Google Scholar 

  228. 228.

    Toci, G., et al. Conceptual Design of a Laser Driver for a Plasma Accelerator User Facility. Instruments 3, 40 (2019).

    Article  Google Scholar 

  229. 229.

    Ferrara, P., et al. 3–D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment. Opt. Express 22, 5375. doi:https://doi.org/10.1364/OE.22.005375. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-5-5375 (Mar. 2014).

    Article  ADS  Google Scholar 

  230. 230.

    Alessi, D.A., Nguyen, H.T., Britten, J.A., Rosso, P.A. & Haefner, C. Low–dispersion low–loss dielectric gratings for efficient ultrafast laser pulse compression at high average powers. Opt. Laser Technol. 117, 239–243. doi:https://doi.org/10.1016/J.OPTLASTEC.2019.04.005. https://www.sciencedirect.com/science/article/pii/S0030399218320218 (Sept. 2019)

    Article  ADS  Google Scholar 

  231. 231.

    De Vido, M., et al. A scalable high–energy diode–pumped solid state laser for laser–plasma interaction science and applications. J. Phys. Conf. Ser. 717, 012090. doi:https://doi.org/10.1088/1742-6596/717/1/012090. http://stacks.iop.org/1742-6596/717/i=1/a=012090?key=crossref.7a785c45870b7afba9fa905eb32e8ec2 (May (2016).

    Article  Google Scholar 

  232. 232.

    Leemans, W. Progress on Petawatt level experiments at BELLA Center for electron and ion acceleration Elba, Italy, 2017.

  233. 233.

    Mathieu, F., et al. Device and method for the measurement of inclination and angular stability of electromagnetic radiation beams (patent no: 102019000020562) 2019.

  234. 234.

    Galvin, T., et al. Scaling of petawatt–class lasers to multi–kHz repetition rates in Proc. SPIE 11033, High–Power, High–Energy, High–Intensity Laser Technol. IV (2019), 1103303. doi:https://doi.org/10.1117/12.2520981.

    Google Scholar 

  235. 235.

    Honea, E.C., et al. 115 W Tm:YAG CW diode–pumped solid–state laser in Adv. Solid State Lasers. (OSA, Washington, D.C., Jan. 1997), HP8. doi:https://doi.org/10.1364/ASSL.1997.HP8. https://www.osapublishing.org/abstract.cfm?URI=ASSL–1997–HP8.

  236. 236.

    Dergachev, A., et al. Review of Multipass Slab Laser Systems. IEEE J. Sel. Top. Quantum Electron. 13, 647–660 13, 647–660doi:https://doi.org/10.1109/JSTQE.2007.897177. http://ieeexplore.ieee.org/document/4244415/ (2007).

    Article  Google Scholar 

  237. 237.

    International Electrotechnical Commission (IEC). Functional safety and IEC 61508 : A basic guide tech. rep.May (IEC, 2004). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&=1&cad=rja&uact=8&ved=0ahUKEwi9x4Oky6TNAhUEKcAKHQZ2BQIQFggfMAA&url=http%3A%2F%2Fwebarchive.nationalarchives.gov.uk%2F20111005155017%2Fhttp%3A%2Fwww.dft.gov.uk%2Fpgr%2Frail%2Fpassenger%2Ffranchis.

  238. 238.

    Gizzi, L., et al. EuPRAXIA Milestone Report: M4.4 Final Laser and Controls Requirement Table tech. rep. (EuPRAXIA, 2018).

  239. 239.

    Palmer, D.T., et al. The next generation photoinjector tech. rep. (Stanford Linear Accelerator Center (SLAC), 2005).

  240. 240.

    Palmer, D.T., et al. Simulations of the BNL/SLAC/UCLA 1.6 cell emittance compensated photocathode rf gun low energy beam line tech. rep. (Stanford Linear Accelerator Center SLAC–PUB–95–6800, 1995).

  241. 241.

    Adriani, O., et al. Technical Design Report EuroGammaS proposal for the ELI–NP Gamma beam System (2014).

  242. 242.

    Limborg-Deprey, C. RF Design of the LCLS Gun tech. rep. (SLAC National Accelerator Laboratory (SLAC), 2010). http://www.ssrl.slac.stanford.edu/lcls/technotes/lcls-tn-05-3.pdf.

  243. 243.

    Dolgashev, V.A., Tantawi, S.G., Nantista, C.D., Higashi, Y. & Higo, T. RF breakdown in normal conducting single–cell structures in Part. Accel. Conf. 2005. PAC 2005. Proc. (2005) 595–599.

  244. 244.

    Palmer, D.T., et al. Microwave measurements of the BNL/SLAC/UCLA 1.6 cell photocathode RF gun in Part. Accel. Conf. 1995., Proc. 1995 2 (1995), 982–984.

  245. 245.

    Guan, X., et al. Study of RF–asymmetry in photo–injector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 574, 17–21 (2007).

    Article  ADS  Google Scholar 

  246. 246.

    Chae, M.S., et al. Emittance growth due to multipole transverse magnetic modes in an rf gun. Phys. Rev. Spec. Top. Beams 14, 104203 (2011).

  247. 247.

    Bacci, A. and Giribono, A.. private communications.

  248. 248.

    Los Alamos Accelerator Code Group. Download Area for Poisson Superfish http://laacg.lanl.gov/laacg/services/download_sf.phtml.

  249. 249.

    ANSYS Inc. ANSYS http://www.ansys.com.

  250. 250.

    Alesini, D., Lollo, V. & Battisti, A. A. Process for manufacturing a vacuum and radiofrequency metal gasket and structure incorporating it (patent no: WO2016147118A1, PCT/IB2016/051464), 2016.

  251. 251.

    Alesini, D., et al. New technology based on clamping for high gradient radio frequency photogun. Phys. Rev. Spec. Top. Beams 18, 92001 (2015).

    Article  ADS  Google Scholar 

  252. 252.

    Kuroda, R., et al. Quasi–monochromatic hard X–ray source via laser Compton scattering and its application. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 637, S183–S186 (2011).

    Article  Google Scholar 

  253. 253.

    Kong, S.H., Kinross-Wright, J., Nguyen, D.C. & Sheffield, R.L. Photocathodes for free electron lasers. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 358, 272–275 (1995).

    Article  ADS  Google Scholar 

  254. 254.

    Dowell, D.H. & Schmerge, J.F. Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. Spec. Top. Beams 12, 74201 (2009).

    Article  ADS  Google Scholar 

  255. 255.

    Cultrera, L., et al. Mg based photocathodes for high brightness RF photoinjectors. Appl. Surf. Sci. 253, 6531–6534 (2007).

    Article  ADS  Google Scholar 

  256. 256.

    Lorusso, A., et al. Pulsed laser deposition of yttrium photocathode suitable for use in radiofrequency guns. Appl. Phys. A 123, 779 (2017).

    Article  ADS  Google Scholar 

  257. 257.

    Zhou, F., et al. Recent photocathode R&D for the LCLS injector in FEL Conf. 2014, Proc (2014), 771–773.

  258. 258.

    Carlsten, B. New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 285, 313–319. doi:https://doi.org/10.1016/0168-9002(89)90472-5. https://www.sciencedirect.com/science/article/pii/0168900289904725 (Dec. 1989).

    Article  ADS  Google Scholar 

  259. 259.

    Billen, J.H. & Young, L.M. Poisson Superfish. Los Alamos Nat. Lab tech. rep (LA–UR–96–1834, revised, 2006).

  260. 260.

    Serafini, L. & Ferrario, M. Velocity bunching in photo–injectors in AIP Conf. Proc. 581 (AIP, Sept. 2001), 87–106. doi:https://doi.org/10.1063/1.1401564. http://aip.scitation.org/doi/abs/10.1063/1.1401564.

  261. 261.

    Ferrario, M., et al. Experimental demonstration of emittance compensation with velocity bunching. Phys. Rev. Lett. 104, 54801 (2010).

    Article  ADS  Google Scholar 

  262. 262.

    Neal, R.B. THE STANFORD 2–MILE LINEAR ACCELERATOR. Phys. Today 20, 27–41 (1966).

    Article  Google Scholar 

  263. 263.

    Flottmann, K., Piot, P., Ferrario, M. & Grigorian, B. The TESLA X-FEL injector in Proc. Part. Accel. Conf. 2001 (2001), 2236ß2238.

  264. 264.

    Wuensch, W. Ultimate Field Gradient in Metallic Structures in Proc. Int. Part. Accel. Conf. (IPAC’17), Copenhagen, Denmark, 14–19 May, 2007, (2017), 24–29.

  265. 265.

    Higo, T., et al. Advances in X–band TW accelerator structures operating in the 100 MV/m regime in IPAC 2010–1st Int. Part. Accel. Conf. (Kyoto, Japan, 2010), THPEA013/SLAC– PUB–15150.

  266. 266.

    Delahaye, J.-P. Towards CLIC feasibility tech. rep. (2010), CERN–OPEN–2010–024, CLIC– Note–822.

  267. 267.

    Shintake, T. in Synchrotron Light Sources Free. Lasers Accel. Physics, Instrum. Sci. Appl. (Springer International Publishing, 2014)1–48.

  268. 268.

    Löhl, F., et al. Status of the SwissFEL C–band Linac in 36th Int. Free Electron Laser Conf. FEL 2014 (FEL 2014) (2014), 322–326.

  269. 269.

    Alesini, D., et al. The C-Band accelerating structures for SPARC photoinjector energy upgrade. J. Instrum. 8, P05004 (2013).

    Article  Google Scholar 

  270. 270.

    Farkas, Z.D., Hoag, H.A., Loew, G.A. & Wilson, P.B. SLED: A Method of Doubling SLAC’s Energy in Proceedings, 9th Int. Conf. High–Energy Accel. (HEACC 1974) Stanford, California, May 2–7, 1974 (1974), 576.

  271. 271.

    Chao, A.W. Physics of collective beam instabilities in high–energy accelerators (Wiley, New York, USA, 1993).

  272. 272.

    Bane, K.L.F. Short range dipole wakefields in accelerating structures for the NLC tech. rep. (2003)

  273. 273.

    Faure, J., et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544. doi:https://doi.org/10.1038/nature02963. https://doi.org/10.1038/nature02963 (2004).

    Article  ADS  Google Scholar 

  274. 274.

    Vieira, J.M., et al. Magnetic Control of Particle Injection in Plasma Based Accelerators. Phys. Rev. Lett. 106, 225001. doi:https://doi.org/10.1103/PhysRevLett.106.225001. http://link.aps.org/doi/10.1103/PhysRevLett.106.225001 (2011).

    Article  ADS  Google Scholar 

  275. 275.

    Bulanov, S.V., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257–R5260. doi:https://doi.org/10.1103/PhysRevE.58.R5257. http://link.aps.org/doi/10.1103/PhysRevE.58.R5257 (1998).

    Article  ADS  Google Scholar 

  276. 276.

    Schmid, K. & Veisz, L. Supersonic gas jets for laser–plasma experiments. Rev. Sci. Instrum. 83, 53304. doi:https://doi.org/10.1063/1.4719915. http://scitation.aip.org/content/aip/journal/rsi/83/5/10.1063/1.4719915 (2012).

    Article  ADS  Google Scholar 

  277. 277.

    Rowlands-Rees, T.P., et al. Laser–driven acceleration of electrons in a partially ionized plasma channel. Phys Rev Lett 100, 105005. doi:https://doi.org/10.1103/PhysRevLett.100.105005 (2008).

    Article  ADS  Google Scholar 

  278. 278.

    McGuffey, C., et al. Ionization Induced Trapping in a LaserWakefield Accelerator. Phys. Rev. Lett. 104, 25004. doi:https://doi.org/10.1103/PhysRevLett.104.025004. http://link.aps.org/doi/10.1103/PhysRevLett.104.025004 (2010).

    Article  ADS  Google Scholar 

  279. 279.

    Pak, A., et al. Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes. Phys. Rev. Lett. 104, 25003. doi:https://doi.org/10.1103/PhysRevLett.104.025003. http://link.aps.org/doi/10.1103/PhysRevLett.104.025003 (2010).

    Article  ADS  Google Scholar 

  280. 280.

    Audet, T.L., et al. Investigation of ionization–induced electron injection in a wakefield driven by laser inside a gas cell. Phys. Plasmas 23. 4942033. doi:https://doi.org/10.1063/1.4942033.. http://scitation.aip.org/content/aip/journal/pop/23/2/10.1063/1.4942033 (2016).

    Article  Google Scholar 

  281. 281.

    Chen, M., Esarey, E.H., Schroeder, C.B., Geddes, C.G.R. & Leemans, W.P. Theory of ionization–induced trapping in laser–plasma accelerators. Phys. Plasmas 19, 33101. doi:https://doi.org/10.1063/1.3689922. http://link.aip.org/link/?PHP/19/033101/1 (2012).

    Article  Google Scholar 

  282. 282.

    Pollock, B.B., et al. Demonstration of a Narrow Energy Spread, ~ 0.5 GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator. Phys. Rev. Lett. 107, 45001. doi:https://doi.org/10.1103/PhysRevLett.107.045001. http://link.aps.org/doi/10.1103/PhysRevLett.107.045001 (2011).

    Article  ADS  Google Scholar 

  283. 283.

    Mehrling, T.J., Robson, R.E., Erbe, J.-H. & Osterhoff, J. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 367–371. doi:https://doi.org/10.1016/j.nima.2016.01.091. http://www.sciencedirect.com/science/article/pii/S0168900216001418 (2016).

    Article  ADS  Google Scholar 

  284. 284.

    Swanson, K.K., et al. Control of tunable, monoenergetic laser–plasma–accelerated electron beams using a shock–induced density downramp injector. Phys. Rev. Accel. Beams 20, 1–6. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.051301 (2017).

    Article  Google Scholar 

  285. 285.

    Lee, P., et al. Optimization of laser–plasma injector via beam loading effects using ionizationinduced injection. Phys. Rev. Accel. Beams 21, 052802. doi:https://doi.org/10.1103/PhysRevAccelBeams.21.052802. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.052802 (May 2018).

    Article  ADS  Google Scholar 

  286. 286.

    Kononenko, O., et al. 2D hydrodynamic simulations of a variable length gas target for density down–ramp injection of electrons into a laser wakefield accelerator. Nucl. Inst. Methods Phys. Res. A 829, 125–129. doi:https://doi.org/10.1016/j.nima.2016.03.104. https://doi.org/10.1016/j.nima.2016.03.104 (Sept. 2016).

    Article  ADS  Google Scholar 

  287. 287.

    Lee, P., et al. Modeling laser–driven electron acceleration using WARP with Fourier decomposition. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 358–362. doi:https://doi.org/10.1016/j.nima.2015.12.036 (2016).

    Article  ADS  Google Scholar 

  288. 288.

    Lee, P., et al. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles. Phys. Rev. Acc. Beams 19, 112802. doi:https://doi.org/10.1103/PhysRevAccelBeams.19.112802 (2016).

    Article  ADS  Google Scholar 

  289. 289.

    Semushin, S. & Malka, V. High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961. doi:https://doi.org/10.1063/1.1380393. http://scitation.aip.org/content/aip/journal/rsi/72/7/10.1063/1.1380393 (2001).

    Article  ADS  Google Scholar 

  290. 290.

    Leemans, W.P., et al. GeV electron beams from a centimetre–scale accelerator. Nat. Phys. 2, 696–699. doi:https://doi.org/10.1038/nphys418. http://www.nature.com/doifinder/10.1038/nphys418 (2006).

    Article  Google Scholar 

  291. 291.

    Audet, T., et al. EuPRAXIA Milestone Report: M3.2 Design for Interaction Chambers Proposed tech. rep. (EuPRAXIA, 2017).

  292. 292.

    Streeter, M.J.V., et al. Temporal feedback control of high–intensity laser pulses to optimize ultrafast heating of atomic clusters. Appl. Phys. Lett. 112, 244101. doi:https://doi.org/10.1063/1.5027297. http://aip.scitation.org/doi/10.1063/1.5027297 (2018).

    Article  ADS  Google Scholar 

  293. 293.

    Kallos, E., et al. High-Gradient Plasma–Wakefield Acceleration with Two Subpicosecond Electron Bunches. Phys. Rev. Lett. 100, 074802. doi:https://doi.org/10.1103/PhysRevLett.100.074802. https://link.aps.org/doi/10.1103/PhysRevLett.100.074802 (Feb. 2008).

    Article  ADS  Google Scholar 

  294. 294.

    Aschikhin, A., et al. The FLASHForward facility at DESY. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 806, 175–183. doi:https://doi.org/10.1016/J.NIMA.2015.10.005. https://www.sciencedirect.com/science/article/pii/S0168900215012103 (Jan. 2016):.

    Article  ADS  Google Scholar 

  295. 295.

    Walker, P.A., et al. Horizon 2020 EuPRAXIA design study. J. Phys. Conf. Ser. 874, 012029. doi:https://doi.org/10.1088/1742-6596/874/1/012029. http://stacks.iop.org/1742-6596/874/i=1/a=012029?key=crossref.38f8a3aa8a83e5e841762fbfd0deb590 (July 2017).

    Article  Google Scholar 

  296. 296.

    Ferrario, M., et al. SPARC_LAB present and future. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 309, 183–188. doi:https://doi.org/10.1016/J.NIMB.2013.03.049 (Aug. 2013).

    Article  ADS  Google Scholar 

  297. 297.

    Benedetti, C., Schroeder, C., Esarey, E. & Leemans, W. Emittance preservation in plasmabased accelerators with ion motion. Phys. Rev. Accel. Beams 20, 111301. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.111301. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.111301 (Nov. 2017).

    Article  ADS  Google Scholar 

  298. 298.

    Tzoufras, M., et al. Beam loading by electrons in nonlinear plasma wakes. Phys. Plasmas 16. doi:https://doi.org/10.1063/1.3118628 (May 2009).

  299. 299.

    Serafini, L. & Rosenzweig, J.B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation. Phys. Rev. E 55, 7565–7590. doi:https://doi.org/10.1103/PhysRevE.55.7565. http://link.aps.org/doi/10.1103/PhysRevE.55.7565 (1997).

    Article  ADS  Google Scholar 

  300. 300.

    Ferrario, M., et al. Direct Measurement of the Double Emittance Minimum in the Beam Dynamics of the Sparc High-Brightness Photoinjector. Phys. Rev. Lett. 99, 234801. doi:https://doi.org/10.1103/PhysRevLett.99.234801. https://link.aps.org/doi/10.1103/PhysRevLett.99.234801 (Dec. 2007).

    Article  ADS  Google Scholar 

  301. 301.

    Aune, B. & Miller, R.H. New Method for Positron Production At Slac in 1979 Linear Accel. Conf. (1979), 0–3.

  302. 302.

    Emma, P. Accelerator Physics challenges of X–ray FEL SASE Sources in Proc. EPAC 2002, Paris, Fr. (2002), 49–53.

  303. 303.

    Chiadroni, E. et al. Beam manipulation for resonant plasma wakefield acceleration. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. –. doi:https://doi.org/10.1016/j.nima.2017.01.017. http://www.sciencedirect.com/science/article/pii/S0168900217300165 (2017).

  304. 304.

    Rossi, A.R. et al. The External-Injection experiment at the SPARC_LAB facility. Nucl. Instrum. Meth. A 740, 60–66. doi:https://doi.org/10.1016/0030-4018(93)90611-8. http://www.sciencedirect.com/science/article/pii/S016890021301454X (2014).

    Article  ADS  Google Scholar 

  305. 305.

    Pompili, R. et al. Experimental characterization of active plasma lensing for electron beams. Appl. Phys. Lett. 110, 104101. doi:https://doi.org/10.1063/1.4977894. https://doi.org/10.1063/1.4977894 (2017).

    Article  ADS  Google Scholar 

  306. 306.

    Giannessi, L. et al. Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering. Phys. Rev. Lett. 106, 144801. doi:https://doi.org/10.1103/PhysRevLett.106.144801. https://link.aps.org/doi/10.1103/PhysRevLett.106.144801 (Apr. 2011).

    Article  ADS  Google Scholar 

  307. 307.

    Giannessi, L. et al. Superradiant Cascade in a Seeded Free-Electron Laser. Phys. Rev. Lett. 110, 044801. doi:https://doi.org/10.1103/PhysRevLett.110.044801. https://link.aps.org/doi/10.1103/PhysRevLett.110.044801 (Jan. 2013).

    Article  ADS  Google Scholar 

  308. 308.

    Labat, M. et al. High-Gain Harmonic–Generation Free-Electron Laser Seeded by Harmonics Generated in Gas. Phys. Rev. Lett. 107, 224801. doi:https://doi.org/10.1103/PhysRevLett.107.224801. https://link.aps.org/doi/10.1103/PhysRevLett.107.224801 (Nov. 2011).

    Article  ADS  Google Scholar 

  309. 309.

    Ronsivalle, C. et al. Large–bandwidth two–color free–electron laser driven by a comb–like electron beam. New J. Phys. 16, 033018. doi:https://doi.org/10.1088/1367-2630/16/3/033018. http://stacks.iop.org/1367-2630/16/i=3/a=033018?key=crossref.a08948663f61174c2a249ec7d2efde8b (Mar. 2014).

    Article  ADS  Google Scholar 

  310. 310.

    Giribono, A. X–ray generation at SPARC_LAB Thomson backscattering source. Nuovo Cim. C– Colloq. Commun. Phys. 38. https://www.sif.it/riviste/sif/ncc/econtents/2015/038/02/article/22 (2015).

  311. 311.

    Vaccarezza, C. et al. The SPARC_LAB Thomson source. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 237–242. https://www.sciencedirect.com/science/article/pii/S0168900216001303?via%3Dihub (2016).

    Article  ADS  Google Scholar 

  312. 312.

    Chiadroni, E. et al. Characterization of the THz radiation source at the Frascati linear accelerator. Rev. Sci. Instrum. 84, 22703. doi:https://doi.org/10.1063/1.4790429. https://doi.org/10.1063/1.4790429 (2013).

    Article  Google Scholar 

  313. 313.

    Chiadroni, E. et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 102, 094101. doi:https://doi.org/10.1063/1.4794014. http://aip.scitation.org/doi/10.1063/1.4794014 (Mar. 2013).

    Article  ADS  Google Scholar 

  314. 314.

    Alesini, D. et al. Status of the SPARC project. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 528, 586–590. doi:https://doi.org/10.1016/J.NIMA.2004.04.107. https://www.sciencedirect.com/science/article/pii/S0168900204007831 (Aug. 2004).

    Article  ADS  Google Scholar 

  315. 315.

    Young, L. TStep: An electron linac design code

  316. 316.

    Zhu, J., Assmann, R., Dorda, U. & Marchetti, B. Lattice design and start–to–end simulations for the ARES linac. Nucl. Instruments Methods Phys. Res. A 909, 467–470. doi:10.1016/j. nima.2018.02.045 (Nov. 2018).

    Article  ADS  Google Scholar 

  317. 317.

    Dorda, U. et al. Status and objectives of the dedicated accelerator R&D facility “SINBAD” at DESY. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 239–242 (2018).

    Article  ADS  Google Scholar 

  318. 318.

    Zhu, J. Design Study for Generating Sub–Femtosecond to Femtosecond Electron Bunches for Advanced Accelerator Development at SINBAD PhD thesis (University of Hamburg).

  319. 319.

    Lemery, F. et al. Overview of the ARES Bunch Compressor at SINBAD in Proc. 10th Int. Part. Accel. Conf. (Melbourne, 2019) MOPTS025. doi:10.18429/JACoW– IPAC2019– MOPTS025.

  320. 320.

    Floettmann, K. et al. Astra: A space charge tracking algorithm. Manual, Version 3, 2014. http://www.desy.de/$%5Csim$mpyflo/Astra_manual/Astra–Manual_V3.2.pdf (2011).

  321. 321.

    Qiang, J., Lidia, S., Ryne, R.D. & Limborg-Deprey, C. Three–dimensional quasistatic model for high brightness beam dynamics simulation. Phys. Rev. Spec. Top.–Accel. Beams 9, 044204. doi:https://doi.org/10.1103/PhysRevSTAB.9.044204. https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204 (Apr. 2006).

    Article  ADS  Google Scholar 

  322. 322.

    Zhu, J., Assmann, R., Dorda, U., Marchetti, B. & Elektronen–synchrotron D. Matching Space-Charge Dominated Electron Bunches Into The Plasma Accelerator At SinbAD in IPAC 2017. Copenhagen (2017), 4429–4431.

  323. 323.

    Ferrario, M. et al. Laser comb with velocity bunching: Preliminary results at SPARC. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 637, S43–S46. doi:https://doi.org/10.1016/J.NIMA.2010.02.018. https://www.sciencedirect.com/science/article/pii/S0168900210002160?via%3Dihub (May 2011).

    Article  Google Scholar 

  324. 324.

    Villa, F. et al. Laser pulse shaping for high gradient accelerators. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 446–451. doi:https://doi.org/10.1016/J.NIMA.2016.01.010. https://www.sciencedirect.com/science/article/pii/S0168900216000139?via%3Dihub (Sept. 2016).

    Article  ADS  Google Scholar 

  325. 325.

    Mostacci, A. et al. Advanced Beam Manipulation Techniques at SPARC in IPAC 2011 (San Sebastian, Spain, 2011), 2877–2881.

  326. 326.

    Giorgianni, F. et al. Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Longitudinal Manipulation. Appl. Sci. 6, 56. doi:https://doi.org/10.3390/app6020056. http://www.mdpi.com/2076-3417/6/2/56 (Feb. 2016).

    Article  Google Scholar 

  327. 327.

    Petrillo, V. et al. Observation of Time-Domain Modulation of Free–Electron–Laser Pulses by Multipeaked Electron-Energy Spectrum. Phys. Rev. Lett. 111, 114802. doi:https://doi.org/10.1103/PhysRevLett.111.114802. https://link.aps.org/doi/10.1103/PhysRevLett.111.114802 (Sept. 2013).

    Article  ADS  Google Scholar 

  328. 328.

    Petralia, A. et al. Two-Color Radiation Generated in a Seeded Free-Electron Laser with Two Electron Beams. Phys. Rev. Lett. 115, 014801. doi:https://doi.org/10.1103/PhysRevLett.115.014801. https://link.aps.org/doi/10.1103/PhysRevLett.115.014801 (June 2015).

    Article  ADS  Google Scholar 

  329. 329.

    Tzoufras, M. et al. Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration. Phys. Rev. Lett. 101, 145002. doi:https://doi.org/10.1103/PhysRevLett.101.145002. https://link.aps.org/doi/10.1103/PhysRevLett.101.145002 (Sept.2008).

    Article  ADS  Google Scholar 

  330. 330.

    Assmann, R. & Yokoya, K. Transverse beam dynamics in plasma–based linacs. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 410, 544–548. doi:https://doi.org/10.1016/S0168-9002(98)00187-9. https://www.sciencedirect.com/science/article/pii/S0168900298001879?via%3Dihub (June 1998).

    Article  ADS  Google Scholar 

  331. 331.

    Ferran Pousa, A., Assmann, R., Brinkmann, R. & Martinez de la Ossa, A. External Injection into a Laser-Driven Plasma Accelerator with Sub-Femtosecond Timing Jitter. J. Phys. Conf. Ser. 874, 012032. doi:https://doi.org/10.1088/1742-6596/874/1/012032. http://stacks.iop.org/1742-6596/874/i=1/a=012032?key=crossref.eb0dce28a7460e9cef823dfa84a31f93 (2017).

    Article  Google Scholar 

  332. 332.

    Clayton, C. & Serafini, L. Generation and transport of ultrashort phase–locked electron bunches to a plasma beatwave accelerator. IEEE Trans. Plasma Sci. 24, 400–408. doi:10.1109/27.510004. http://ieeexplore.ieee.org/document/510004/ (Apr. 1996).

    Article  ADS  Google Scholar 

  333. 333.

    Katsouleas, T. et al. A plasma klystron for generating ultra–short electron bunches. IEEE Trans. Plasma Sci. 24, 443–447. doi:https://doi.org/10.1109/27.510009. http://ieeexplore.ieee.org/document/510009/ (Apr. 1996).

    Article  ADS  Google Scholar 

  334. 334.

    Ferrario, M., Katsouleas, T., Serafini, L. & Zvi, I. Adiabatic plasma buncher. IEEE Trans. Plasma Sci. 28, 1152–1158. doi:https://doi.org/10.1109/27.893295. http://ieeexplore.ieee.org/document/893295/ (2000).

    Article  ADS  Google Scholar 

  335. 335.

    Gorbunov, L.M. & Kirsanov, V.I. Excitation of plasma waves by an electromagnetic wave packet. Sov. Phys. JETP 66, 290–294. http://www.jetp.ac.ru/cgi–bin/dn/e_066_02_0290.pdf (1987).

    Google Scholar 

  336. 336.

    Fonseca, R. et al. OSIRIS: A three–dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Comput. Sci. 2002, 342–351. doi:https://doi.org/10.1007/3-540-47789-6_36. http://link.springer.com/10.1007/3-540-47789-6_36 (2002).

    MATH  Google Scholar 

  337. 337.

    Gordon, D., Mori, W. & Antonsen, T. A ponderomotive guiding center particle–in–cell code for efficient modeling of laser–plasma interactions. IEEE Trans. Plasma Sci. 28, 1135–1143. doi:https://doi.org/10.1109/27.893300. http://ieeexplore.ieee.org/document/893300/ (Aug. 2000).

    Article  ADS  Google Scholar 

  338. 338.

    Bryant, P. AGILE–a tool for interactive lattice design in Proc. 7th Eur. Part. Accel. Conf. (EPAC 2000) (Vienna, Austria, 2000), 1357–1359.

  339. 339.

    Grote, H. & Schmidt, F. MAD–X–An upgrade from MAD8 in Proc. IEEE Part. Accel. Conf. 5 (2003), 3497–3499.

  340. 340.

    Borland, M. Elegant: A flexible SDDS–compliant code for accelerator simulation. Adv. Phot. Source LS–287, 1–11. doi:https://doi.org/10.2172/761286. http://www.osti.gov/bridge/product.biblio.jsp?osti_id=761286 (Sept. 2000).

    Google Scholar 

  341. 341.

    Assmann, R. et al. SINBAD–A proposal for a dedicated accelerator research facility at DESY in IPAC 2014 Proc. 5th Int. Part. Accel. Conf. (2014), 1466–1469. doi:https://doi.org/10.18429/JACoW-IPAC2014-TUPME047.

  342. 342.

    Zhu, J., Assmann, R.W., Dohlus, M., Dorda, U. & Marchetti, B. Sub–fs electron bunch generation with sub–10–fs bunch arrival–time jitter via bunch slicing in a magnetic chicane. Phys. Rev. Accel. Beams 19, 054401. doi:https://doi.org/10.1103/PhysRevAccelBeams.19.054401. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.054401 (May 2016).

    Article  ADS  Google Scholar 

  343. 343.

    Sprangle, P. & Esarey, E.H. Interaction of ultrahigh laser fields with beams and plasmas. Phys. Fluids B-Plasma 4, 2241–2248. doi:https://doi.org/10.1063/1.860192. http://scitation.aip.org/content/aip/journal/pofb/4/7/10.1063/1.860192 (1992).

    Article  ADS  Google Scholar 

  344. 344.

    Sprangle, P., Tang, C.-M. & Esarey, E.H. Relativistic Self-Focusing of Short-Pulse Radiation Beams in Plasmas. IEEE T. Plasma Sci. 15, 145–153. doi:https://doi.org/10.1109/TPS.1987.4316677. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4316677 (1987).

    Article  ADS  Google Scholar 

  345. 345.

    Durfee, C.G. & Milchberg, H.M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412. doi:https://doi.org/10.1103/PhysRevLett.71.2409. http://link.aps.org/doi/10.1103/PhysRevLett.71.2409 (1993).

    Article  ADS  Google Scholar 

  346. 346.

    Lemos, N. et al. Plasma expansion into a waveguide created by a linearly polarized femtosecond laser pulse. Phys Plasmas 20, 63102–63110. doi:https://doi.org/10.1063/1.4810797 (2013).

    Article  Google Scholar 

  347. 347.

    Lemos, N. et al. Effects of laser polarization in the expansion of plasma waveguides. Phys Plasmas 20, 103106–103109. doi:https://doi.org/10.1063/1.4825228 (2013).

    Article  ADS  Google Scholar 

  348. 348.

    Hooker, S.M. et al. Low Density Plasma Channels Created by Hydrodynamic Expansion of OFI–heated Plasma Columns in Adv. Accel. Concepts Work 2016.

  349. 349.

    Shalloo, R. et al. Low–density hydrodynamic optical–field–ionized plasma channels generated with an axicon lens. Phys. Rev. Accel. Beams 22, 41302. doi:https://doi.org/10.1103/PhysRevAccelBeams.22.041302. doi: https://doi.org/10.1103/PhysRevAccelBeams.22.041302 (2019).

    Article  ADS  Google Scholar 

  350. 350.

    Cros, B. et al. Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding. Phys. Rev. E 65, 26405. doi:https://doi.org/10.1103/PhysRevE.65.026405. http://link.aps.org/doi/10.1103/PhysRevE.65.026405 (2002).

    Article  ADS  Google Scholar 

  351. 351.

    Butler, A., Spence, D.J. & Hooker, S.M. Guiding of High-Intensity Laser Pulses with a Hydrogen-Filled Capillary Discharge Waveguide. Phys Rev Lett 89, 185003. doi:https://doi.org/10.1103/PhysRevLett.89.185003. http://link.aps.org/doi/10.1103/PhysRevLett.89.185003 (Oct. 2002).

    Article  ADS  Google Scholar 

  352. 352.

    Ju, J. & Cros, B. Characterization of temporal and spatial distribution of hydrogen gas density in capillary tubes for laser–plasma experiments. J. Appl. Phys. 112, 113102. doi:https://doi.org/10.1063/1.4768209. http://link.aip.org/link/?JAP/112/113102/1 (2012).

    Article  ADS  Google Scholar 

  353. 353.

    Paradkar, B.S., Cros, B., Mora, P. & Maynard, G. Numerical modeling of multi–GeV laser wakefield electron acceleration inside a dielectric capillary tube. Phys. Plasmas 20, 083120. doi:https://doi.org/10.1063/1.4819718. http://aip.scitation.org/doi/10.1063/1.4819718 (2013).

    Article  ADS  Google Scholar 

  354. 354.

    Vay, J.L. et al. Modeling of 10 GeV–1 TeV laser–plasma accelerators using Lorentz boosted simulations. Phys. Plasmas 18, 1–16. doi:https://doi.org/10.1063/1.3663841 (2011).

    Google Scholar 

  355. 355.

    Kapteyn, H.C., Szoke, A., Falcone, R.W. & Murnane, M.M. Prepulse energy suppression for high–energy ultrashort pulses using self–induced plasma shuttering. Opt. Lett. 16, 490. doi:https://doi.org/10.1364/OL.16.000490. http://www.osapublishing.org/viewmedia.cfm?uri=ol-16-7-490&seq=0&html=true (1991).

    Article  ADS  Google Scholar 

  356. 356.

    Marocchino, A., Massimo, F., Rossi, A.R., Chiadroni, E. & Ferrario, M. Efficient modeling of plasma wakefield acceleration in quasi–non–linear–regimes with the hybrid code Architect. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 386–391 (Sept. 2016).

    Article  ADS  Google Scholar 

  357. 357.

    Massimo, F., Atzeni, S. & Marocchino, A. Comparisons of time explicit hybrid kinetic–fluid code Architect for Plasma Wakefield Acceleration with a full PIC code. J. Comput. Phys. 327, 841–850 (2016).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  358. 358.

    Massimo, F. et al. Transformer ratio studies for single bunch plasma wakefield acceleration. Nucl. Inst. Methods Phys. Res. A 740, 242–245 (Mar. 2014).

    Article  ADS  Google Scholar 

  359. 359.

    Tzoufras, M. et al. Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration. Phys. Rev. Lett. 101, 145002 (Sept. 2008).

    Article  ADS  Google Scholar 

  360. 360.

    Katsouleas, T., Wilks, S., Chen, P., Dawson, J.M. & Su, J.J. Beam loading in plasma accelerators. Part. Accel. 22, 81–99. http://cds.cern.ch/record/898463/files/p81.pdf (1987).

    Google Scholar 

  361. 361.

    Rosenzweig, J.B., Barov, N., Thompson, M.C. & Yoder, R.B. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields. Phys. Rev. Spec. Top. Beams 7, 61302 (2004).

    Article  ADS  Google Scholar 

  362. 362.

    Londrillo, P., Gatti, C. & Ferrario, M. Numerical investigation of beam–driven PWFA in quasi–nonlinear regime. Nucl. Inst. Methods Phys. Res. A 740, 236–241. doi:https://doi.org/10.1016/J.NIMA.2013.10.028. https://www.sciencedirect.com/science/article/pii/S0168900213013740 (Mar. 2014).

    Article  ADS  Google Scholar 

  363. 363.

    Lu, W. et al. A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13, 56709. doi:https://doi.org/10.1063/1.2203364. http://scitation.aip.org/content/aip/journal/pop/13/5/10.1063/1.2203364 (2006).

    Article  Google Scholar 

  364. 364.

    Barov, N. & Rosenzweig, J.B. Propagation of short electron pulses in underdense plasmas. Phys. Rev. E 49, 4407 (1994).

    Article  ADS  Google Scholar 

  365. 365.

    Ting, A., Esarey, E. & Sprangle, P. Nonlinear wakefield generation and relativistic focusing of intense laser pulses in plasmas. Phys. Fluids B 2, 1390–1394. doi:https://doi.org/10.1063/1.859561. http://scitation.aip.org/content/aip/journal/pofb/2/6/10.1063/1.859561 (1990).

    Article  ADS  Google Scholar 

  366. 366.

    Feit, M.D., Komashko, A.M., Musher, S.L., Rubenchik, A.M. & Turitsyn, S.K. Electron cavitation and relativistic self–focusing in underdense plasma. Phys. Rev. E 57, 7122 (1998).

    Article  ADS  Google Scholar 

  367. 367.

    Rosenzweig, J.B., Breizman, B., Katsouleas, T. & Su, J.J. Acceleration and focusing of electrons in two–dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189–R6192. doi:https://doi.org/10.1103/PhysRevA.44.R6189. http://link.aps.org/doi/10.1103/PhysRevA.44.R6189 (1991).

    Article  ADS  Google Scholar 

  368. 368.

    Umstadter, D., Kim, J.K. & Dodd, E. Laser Injection of Ultrashort Electron Pulses into Wakefield Plasma Waves. Phys. Rev. Lett. 76, 2073–2076. doi:https://doi.org/10.1103/PhysRevLett.76.2073. http://link.aps.org/doi/10.1103/PhysRevLett.76.2073 (1996).

    Article  ADS  Google Scholar 

  369. 369.

    Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608. doi:https://doi.org/10.1038/377606a0. https://doi.org/10.1038/377606a0 (1995).

    Article  ADS  Google Scholar 

  370. 370.

    Esarey, E.H., Hubbard, R.F., Leemans, W.P., Ting, A. & Sprangle, P. Electron Injection into Plasma Wakefields by Colliding Laser Pulses. Phys. Rev. Lett. 79, 2682–2685. doi:10.1103/PhysRevLett.79.2682. http://link.aps.org/doi/10.1103/PhysRevLett.79.2682 (1997).

    Article  ADS  Google Scholar 

  371. 371.

    Maier, A.R. et al. Demonstration scheme for a laser–plasma–driven free–electron laser. Phys. Rev. X 2, 1–7. doi:https://doi.org/10.1103/PhysRevX.2.031019 (2012).

    ADS  Google Scholar 

  372. 372.

    Couprie, M.E. et al. in X-Ray Lasers 2012 55–62 (Springer, 2014).

  373. 373.

    O’Shea, F.H. et al. Short period, high field cryogenic undulator for extreme performance x–ray free electron lasers. Phys. Rev. Spec. Top. Beams 13, 70702 (2010).

    Article  ADS  Google Scholar 

  374. 374.

    Walker, R.P. Interference effects in undulator and wiggler radiation sources. Nucl. Instrum. Methods Phys. Res. 335, 328–337. doi:https://doi.org/10.1016/0168-9002(93)90288-S (1993).

    Article  ADS  Google Scholar 

  375. 375.

    Walker, R.P. Phase errors and their effect on undulator radiation properties. Phys. Rev. Spec. Top. Beams 16, 10704 (2013).

    Article  ADS  Google Scholar 

  376. 376.

    Couprie, M.-E., Andre, T. & Andriyash, I. COXINEL: Towards free electron laser amplification to qualify laser plasma acceleration. Reza Kenkyu 45, 94–98 (2017).

    Google Scholar 

  377. 377.

    Antici, P. et al. Laser–driven electron beamlines generated by coupling laser–plasma sources with conventional transport systems. J. Appl. Phys. 112. doi:https://doi.org/10.1063/1.4740456 (2012).

  378. 378.

    Liu, T., Zhang, T., Wang, D. & Huang, Z. Compact beam transport system for free–electron lasers driven by a laser plasma accelerator. Phys. Rev. Accel. Beams 20, 20701 (2017).

    Article  ADS  Google Scholar 

  379. 379.

    Migliorati, M. et al. Intrinsic normalized emittance growth in laser–driven electron accelerators. Phys. Rev. ST Accel. Beams 16, 11302. doi:https://doi.org/10.1103/PhysRevSTAB.16.011302. http://link.aps.org/doi/10.1103/PhysRevSTAB.16.011302 (2013).

    Article  ADS  Google Scholar 

  380. 380.

    Hosokai, T. et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z–pinch discharge in a gas–filled capillary. Opt. Lett. 25, 10–12 (2000).

    Article  ADS  Google Scholar 

  381. 381.

    Thaury, C. et al. Demonstration of relativistic electron beam focusing by a laser–plasma lens. Nat Commun 6, —. doi:https://doi.org/10.1038/ncomms7860 (Apr. 2015).

  382. 382.

    Iwashita, Y. et al. Super strong adjustable permanent magnet quadrupole for the final focus in a linear collider in Proc. 10th Eur. Part. Accel. Conf. EPAC 6 (2006), 2550–2552.

  383. 383.

    Eichner, T. et al. Miniature magnetic devices for laser–based, table–top free–electron lasers. Phys. Rev. Spec. Top. Beams 10, 82401 (2007).

    Article  ADS  Google Scholar 

  384. 384.

    Lou, W., Hartill, D., Rice, D., Rubin, D. & Welch, J. Stability considerations of permanent magnet quadrupoles for CESR phase–III upgrade. Phys. Rev. Spec. Top. Beams 1, 22401 (1998).

    Article  ADS  Google Scholar 

  385. 385.

    Lim, J.K. et al. Adjustable, short focal length permanent–magnet quadrupole based electron beam final focus system. Phys. Rev. Spec. Top. Beams 8, 72401 (2005).

    Article  ADS  Google Scholar 

  386. 386.

    Modena, M. et al. Design, assembly and first measurements of a short model for CLIC final focus hybrid quadrupole QD0 in Conf. Proc. 1205201, THPPD010 (2012).

    Google Scholar 

  387. 387.

    N’gotta, P., Le Bec, G., Chavanne, J. Hybrid high gradient permanent magnet quadrupole. Phys. Rev. Accel. Beams 19, 122401 (2016).

    Article  ADS  Google Scholar 

  388. 388.

    Ghaith, A. et al. Permanent Magnet-Based Quadrupoles for Plasma Acceleration Sources. Instruments 3, 27. doi:https://doi.org/10.3390/instruments3020027. https://www.mdpi.com/2410-390X/3/2/27 (2019).

    Article  Google Scholar 

  389. 389.

    Mihara, T., Iwashita, Y., Kumada, M. & Sugiyama, E. A superstrong adjustable permanent magnet quadrupole for the final focus lens in a linear collider in Proc. 1st Annu. Meet. Part. Accel. Soc. Japan 29th Linear Accel. Meet. Japan (2004).

  390. 390.

    Shepherd, B., Clarke, J. & Collomb, N. Construction And Measurement Of Novel Adjustable Permanent Magnet Quadrupoles For ClIC in Proc. 3h Int. Part. Accel. Conf. (New Orleans, USA, 2016), THPPD016.

  391. 391.

    Gottschalk, S.C., Kangas, K., DeHart, T.E., Volk, J.T., Spencer, C.M. Performance of an adjustable strength permanent magnet quadrupole in Proc. 2005 Part. Accel. Conf. (2005), 2071–2073.

  392. 392.

    Tosin, G., Sanchez, P.P., Citadini, J.F. & Vergasta, C.C. Super hybrid quadrupoles. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 674, 67–73 (2012).

    Article  ADS  Google Scholar 

  393. 393.

    Rago, C.E., Spencer, C.M., Wolf, Z. & Yocky, G. High reliability prototype quadrupole for the Next Linear Collider. IEEE Trans. Appl. Supercond. 12, 270–273 (2002).

    Article  ADS  Google Scholar 

  394. 394.

    Benabderrahmane, C., Couprie, M., Forest, F., Cosson, O. Multi–pôle magnétique réglable 2016.

  395. 395.

    Ghaith, A. et al. Cryogenic Permanent Magnet Undulator for an FEL Application in Proc. FEL2017 (Santa Fe, USA, 2017), WEP065.

  396. 396.

    Kitegi, C. et al. QUAPEVA: Variable High Gradient Permanent Magnet Quadrupole in 60th ICFA Adv. Beam Dyn. Work. Futur. Light Sources (Shanghai, China, 2018), WEA2WD01.

  397. 397.

    Ghaith, A. et al. Tunable high gradient quadrupoles for a laser plasma acceleration based FEL. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 290–293 (2018).

    Article  ADS  Google Scholar 

  398. 398.

    Oumbarek Espinos, D. et al. Skew Quadrupole Effect of Laser Plasma Electron Beam Transport. Appl. Sci. 9, 2447. doi:https://doi.org/10.3390/app9122447. https://www.mdpi.com/2076-3417/9/12/2447 (2019).

    Article  Google Scholar 

  399. 399.

    Panofsky, W.K.H. & Baker, W.R. A focusing device for the external 350–MeV proton beam of the 184–inch cyclotron at Berkeley. Rev. Sci. Instrum. 21, 445–447 (1950).

    Article  ADS  Google Scholar 

  400. 400.

    Autin, B. et al. A z–pinch plasma lens for focusing high–energy particles in an accelerator. IEEE Trans. plasma Sci. 15, 226–237 (1987).

    Article  ADS  Google Scholar 

  401. 401.

    Van Tilborg, J. et al. Comparative study of active plasma lenses in high–quality electron accelerator transport lines. Phys. Plasmas 25, 56702 (2018).

    Article  Google Scholar 

  402. 402.

    Tatchyn, R. et al. Design considerations for a 60 meter pure permanent magnet undulator for the SLAC linac coherent light source (LCLS) in Proc. Int. Conf. Part. Accel. (PAC 93) (1993), 1608–1610.

  403. 403.

    Halbach, K. Permanent magnet undulators. Le J. Phys. Colloq. 44, C1–211 (1983).

    Google Scholar 

  404. 404.

    Robinson, K.E. et al. Hybrid undulator design considerations. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 250, 100–109 (1986).

    Article  ADS  Google Scholar 

  405. 405.

    Gudat, W., Pflueger, J., Chatzipetros, J. & Peatman, W. An undulator/multipole wiggler for the BESSY storage ring. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 246, 50–53. doi:https://doi.org/10.1016/0168-9002(86)90043-4 (1986).

    Article  ADS  Google Scholar 

  406. 406.

    Tanaka, T. et al. In–vacuum undulators in Proc. 27th Int. Free Electron Conf. (2005), 370–377.

  407. 407.

    Yamamoto, S. et al. Construction of an in–vacuum type undulator for production of undulator x rays in the 5–25 keV region. Rev. Sci. Instrum. 63, 400–403 (1992).

    Article  ADS  Google Scholar 

  408. 408.

    Kersevan, R., Hahn, M., Parat, I. & Schmied, D. Machine operation issue related to the vacuum system of the ESRF. EPAC08, 3705 (2008).

  409. 409.

    Hara, T. et al. In–vacuum undulators of SPring–8. J. Synchrotron Radiat. 5, 403–405 (1998).

    Article  Google Scholar 

  410. 410.

    Hara, T. et al. SPring–8 in–vacuum undulator beam test at the ESRF. J. Synchrotron Radiat. 5, 406–408 (1998).

    Article  Google Scholar 

  411. 411.

    De Lacheisserie, é. d. T. Magnétisme (S/I. Collection Grenoble Sciences, 1999).

  412. 412.

    Coey, J.M.D. Rare–earth iron permanent magnets 54 (Oxford University Press, 1996).

  413. 413.

    Pan, S. Rare Earth Perm. Alloy. High Temp. Phase Transform. 27–93 (Springer, 2013).

  414. 414.

    Givord, D., Li, H.S. & De La Bâthie, R.P. Magnetic properties of Y2Fe14B and Nd2Fe14B single crystals. Solid State Commun. 51, 857–860 (1984).

    Article  ADS  Google Scholar 

  415. 415.

    Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S. & Matsuura, Y. Nd–Fe–B permanent magnet materials. Jpn. J. Appl. Phys. 26, 785 (1987).

    Article  ADS  Google Scholar 

  416. 416.

    Sagawa, M. et al. Dependence of coercivity on the anisotropy field in the Nd2Fe14B–type sintered magnets. J. Appl. Phys. 61, 3559–3561 (1987).

    Article  ADS  Google Scholar 

  417. 417.

    Bizen, T. et al. Baking effect for NdFeB magnets against demagnetization induced by highenergy electrons. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 515, 850–852 (2003).

    Article  ADS  Google Scholar 

  418. 418.

    Bizen, T. et al. High–energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 574, 401–406 (2007).

    Article  ADS  Google Scholar 

  419. 419.

    Hara, T. et al. Cryogenic permanent magnet undulators. Phys. Rev. Spec. Top. Beams 7, 50702 (2004).

    Article  ADS  Google Scholar 

  420. 420.

    Dufeu, D. & Lethuillier, P. High sensitivity 2#T vibrating sample magnetometer. Rev. Sci. Instrum. 70, 3035–3039 (1999).

    Article  ADS  Google Scholar 

  421. 421.

    Abache, C. & Oesterreicher, H. Magnetic properties of compounds R2Fe14B. J. Appl. Phys. 57, 4112–4114 (1985).

    Article  ADS  Google Scholar 

  422. 422.

    Hirosawa, S. et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J. Appl. Phys. 59, 873–879 (1986).

    Article  ADS  Google Scholar 

  423. 423.

    García, L.M., Chaboy, J., Bartolomé, F. & Goedkoop, J.B. Orbital magnetic moment instability at the spin reorientation transition of Nd 2 Fe 14 B. Phys. Rev. Lett. 85, 429 (2000).

    Article  ADS  Google Scholar 

  424. 424.

    Hiroyoshi, H. et al. High–field magnetization of R2Fe14B single crystals. J. Magn. Magn. Mater. 54, 583–584 (1986).

    Article  ADS  Google Scholar 

  425. 425.

    Goll, D., Seeger, M. & Kronmüller, H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets. J. Magn. Magn. Mater. 185, 49–60 (1998).

    Article  ADS  Google Scholar 

  426. 426.

    Couprie, M.E. No Title. SPIE Opt. Optoelectron., 951204.

  427. 427.

    Tanaka, T., Tsuru, R., Nakajima, T. & Kitamura, H. Magnetic characterization for cryogenic permanent–magnet undulators: a first result. J. Synchrotron Radiat. 14, 416–420 (2007).

    Article  Google Scholar 

  428. 428.

    Tanabe, T. et al. Cryogenic Field Measurement of Pr 2 Fe 14 B Undulator and Performance Enhancement Options at the NSLS–II in AIP Conf. Proc. 1234, 29–32 (2010).

    Google Scholar 

  429. 429.

    Kitegi, C.A. et al. Development of a PrFeB cryogenic undulator at NSLS–II. Proc. IPAC2012, New Orleans, Louisiana, USA, 762–764 (2012).

  430. 430.

    Valléau, M. et al. Development of Cryogenic Permanent Magnet Undulators at SOLEIL. Synchrotron Radiat. News 31, 42–47 (2018).

    Article  Google Scholar 

  431. 431.

    Benabderrahmane, C. et al. Nd2Fe14B and Pr2Fe14B magnets characterisation and modelling for cryogenic permanent magnet undulator applications. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 669, 1–6 (2012).

    Article  ADS  Google Scholar 

  432. 432.

    Couprie, M.E et al. The status of the LUNEX5 project in Proc. FEL 14 (2014).

  433. 433.

    Kitegi, C.A. et al. COXINEL Task 2.9, U15 COXINEL Task 2.9 U15 Undulator Report: U15 cryogenic undulator progress report in Proc. IPAC2012, New Orleans, Louisiana, USA, 762–764 (2012).

  434. 434.

    Bahrdt, J. et al. Cryogenic undulator for a table top FEL in AIP Conf. Proc. 1234, 499–502 (2010).

    Google Scholar 

  435. 435.

    Bahrdt, J. et al. Cryogenic design of a PrFeB–based undulator. proc. IPAC, 3111–3113 (2010).

  436. 436.

    Kuhn, C., Schulz, B., Bahrdt, J., Scheer, M. & Gaupp, A. Developing of Advanced Magnet Structures for Cryogenic in Vacuum Permanent Magnet Undulators (2014).

  437. 437.

    Holy, F. et al. First spectral measurements of a cryogenic high–field short–period undulator. Phys. Rev. ST Accel. Beams 17, 50704. doi:https://doi.org/10.1103/PhysRevSTAB.17.050704. http://link.aps.org/doi/10.1103/PhysRevSTAB.17.050704 (2014).

    Article  ADS  Google Scholar 

  438. 438.

    Chavanne, J. et al. Construction of a cryogenic permanent magnet undulator at the ESRF in Proc. EPAC Conf., 2243–2245 (2008).

  439. 439.

    Chavanne, J., Penel, C. & Elleaume, P. Development and operation of a prototype cryogenic permanent magnet undulator at the ESRF (2009).

  440. 440.

    Chavanne, J., Lebec, G., Penel, C., Revol, F. & Kitegi, C. First operational experience with a cryogenic permanent magnet undulator at the ESRF in 23rd Part Accel. Conf. 2414–2416 (2009).

  441. 441.

    Kitegi, C. et al. Development of a cryogenic permanent magnet in–vacuum undulator at the ESRF in Proc. EPAC 2006, Edinburgh, Scotl. 3559–3561 (2006).

  442. 442.

    Tanaka, T. et al. In situ correction of field errors induced by temperature gradient in cryogenic undulators. Phys. Rev. Spec. Top. Beams 12, 120702 (2009).

    Article  ADS  Google Scholar 

  443. 443.

    Calvi, M. et al. Commissioning results of the U14 cryogenic undulator at SLS. J. Phys. Conf. Ser. 425, 32017 (2013).

    Article  Google Scholar 

  444. 444.

    Schmidt, T., Reiche, S. et al. Undulators for the SwissFEL. Proc. FEL2009, Liverpool, UK, 706–713 (2009).

  445. 445.

    Benabderrahmane, C. et al. Development of a 2 m Pr2Fe14B cryogenic permanent magnet undulator at SOLEIL. J. Phys. Conf. Ser. 425, 32019 (2013).

    Article  Google Scholar 

  446. 446.

    Benabderrahmane, C. et al. Development of a PrFeB cryogenic undulator at SOLEIL. Proc. IPAC2010, Kyoto, Japan 3096 (2010).

  447. 447.

    Couprie, M.E. et al. An application of laser–plasma acceleration: towards a free–electron laser amplification. Plasma Phys. Control. Fusion 58, 34020 (2016).

    Article  Google Scholar 

  448. 448.

    André, T. et al. First electron beam measurements on coxinel in 7th Int. Part. Accel. Conf. (IPAC’16), Busan, Korea, 712–715 (2016).

  449. 449.

    Schouten, J.C., Rial, E.C.M. et al. Electron beam heating and operation of the cryogenic undulator and superconducting wigglers at DIAMOND in Proc. 2nd Int. Part. Accel. Conf. IPAC 11 (2011).

  450. 450.

    Ostenfeld, C.W. & Pedersen, M. Cryogenic in–vacuum undulator at Danfysik in Proc. IPAC2010, Kyoto, Japan 3093 (2011).

  451. 451.

    Bahrdt, J. & Kuhn, C. Cryogenic permanent magnet undulator development at HZB/BESSY II. Synchrotron Radiat. News 28, 9–14 (2015).

    Article  Google Scholar 

  452. 452.

    Bahrdt, J. et al. Measurements of the lattice modifications for the cryogenic undulator CPMU17 in Proc. 7th Int. Part. Accel. Conf. (Busan, Korea, 2016).

  453. 453.

    Bahrdt, J. et al. A canted double undulator system with a wide energy range for EMIL in Proc. 6th Int. Part. Accel. Conf. (Richmond, USA, 2015).

  454. 454.

    Bahrdt, J. et al. Characterisation and implementation of the cryogneic permanent magnet undulator CPMU17 at BESSY II in Proc. 10th Int. Part. Accel. Conf., IPAC2019, Melbourne, Aust., 1415–1418. doi:https://doi.org/10.18429/JACoW-IPAC2019-TUPGW014 (2019).

  455. 455.

    Yang, Y., Zhang, X., Sun, S. & Lu, H. Field error correction considerations of cryogenic permanent magnet undulator (CPMU) for high energy photon source test facility (HEPS–TF) (2016).

  456. 456.

    Yang, C.-K. et al. Design of a System at NSRRC to Measure the Field for an In–vacuum Cryogenic Undulator with Permanent Magnet (2014).

  457. 457.

    Chubar, O., Elleaume, P. & Chavanne, J. A three–dimensional magnetostatics computer code for insertion devices. J. Synchrotron Radiat. 5, 481–484 (1998).

    Article  Google Scholar 

  458. 458.

    Clarke, J. & Bradshaw, T. Superconducting Undulator Workshop Report. ICFA Beam Dyn. Newsl. 65, 148 (2014).

    Google Scholar 

  459. 459.

    Casalbuoni, S. et al. Recent developments on superconducting undulators at ANKA (2015).

  460. 460.

    Ivanyushenkov, Y. et al. Development and performance of 1.1–m long superconducting undulator at the Advanced Photon Source (2015).

  461. 461.

    Emma, P. et al. A plan for the development of superconducting undulator prototypes for LCLS–II and future FELs in FEL 2014 Conf. Proceedings, Basel, Switz. (2014).

  462. 462.

    Ivanyushenkov, Y. Magnetic Simulation of a Superconducting Undulator for the Advanced Photon Source in Part. Accel. Proceedings, 23rd Conf. PAC’09, Vancouver, Canada, May 4–8, 2009 (2010), MO6PFP077. http://accelconf.web.cern.ch/AccelConf/PAC2009/papers/mo6pfp077.pdf.

  463. 463.

    Elwood, G., Bayliss, V., Clarke, J., Canfer, S. & Bradshaw, T. Final Prototype Sc Helical Undulator Measured tech. rep. (2013).

  464. 464.

    Corlett, J. et al. Design concepts for a next generation light source at LBNL. Proc FEL2013 (2013).

  465. 465.

    Clarke, J. et al. Status of the UK superconducting planar undulator project in Proc. 4th Int. Part. Accel. Conf. (Shanghai, China, 2013), WEPWA062.

  466. 466.

    Ivanyushenkov, Y. et al. Advances in Superconducting Undulators in 2013 Part. Accel. Conf. Conf. Proc. (2013).

  467. 467.

    Plettner, T. & Byer, R.L. Proposed dielectric–based microstructure laser–driven undulator. Phys. Rev. Spec. Top. Beams 11, 30704 (2008).

    Article  ADS  Google Scholar 

  468. 468.

    Harrison, J., Joshi, A., Lake, J., Candler, R. & Musumeci, P. Surface–micromachined magnetic undulator with period length between 10 mm and 1 mm for advanced light sources. Phys. Rev. Spec. Top. Beams 15, 70703 (2012).

    Article  ADS  Google Scholar 

  469. 469.

    Paulson, K. Micro–undulator research at UCSB. Nucl. Instruments Methods Phys. Res. A Accel. Spectrometers, Detect. Assoc. Equip. 296, 624–630. doi:https://doi.org/10.1016/0168-9002(90)91278-J (1990).

    Article  ADS  Google Scholar 

  470. 470.

    Tachyn, R. Perspectives on micropole undulators in synchrotron radiation technology. Rev. Sci. Instrum. 60, 1796–1804. doi:https://doi.org/10.1063/1.1140907 (1989).

    Article  ADS  Google Scholar 

  471. 471.

    Arnold, D.P. & Wang, N. Permanent magnets for MEMS. J. microelectromechanical Syst. 18, 1255–1266 (2009).

    Article  Google Scholar 

  472. 472.

    Tantawi, S. Microwave–based Undulator: A New Tool for Free Electron Lasers and Synchrotron Light Sources. HBEB Work. Puerto–Rico (2013).

  473. 473.

    Bacci, A., Ferrario, M., Maroli, C., Petrillo, V. & Serafini, L. Transverse effects in the production of x rays with a free–electron laser based on an optical undulator. Phys. Rev. Spec. Top.–Accel. Beams 9, 1–9. doi:https://doi.org/10.1103/PhysRevSTAB.9.060704 (2006).

    MATH  Article  Google Scholar 

  474. 474.

    Whittum, D.H., Sessler, A.M. & Dawson, J.M. Ion–channel laser. Phys. Rev. Lett. 64, 2511 (1990).

    Article  ADS  Google Scholar 

  475. 475.

    Williams, R.L., Clayton, C.E., Joshi, C. & Katsouleas, T.C. Studies of classical radiation emission from plasma wave undulators. IEEE Trans. plasma Sci. 21, 156–166 (1993).

    Article  ADS  Google Scholar 

  476. 476.

    Joshi, C., Katsouleas, T., Dawson, J., Yan, Y. & Slater, J. Plasma wave wigglers for freeelectron lasers. IEEE J. Quantum Electron. 23, 1571–1577 (1987).

    Article  ADS  Google Scholar 

  477. 477.

    Corde, S. & Ta Phuoc, K. Plasma wave undulator for laser–accelerated electrons. Phys. Plasmas 18, 33111 (2011).

    Article  Google Scholar 

  478. 478.

    Rykovanov, S., Schroeder, C., Esarey, E., Geddes, C. & Leemans, W. Plasma Undulator Based on Laser Excitation of Wakefields in a Plasma Channel. Phys. Rev. Lett. 114, 145003. doi:https://doi.org/10.1103/PhysRevLett.114.145003. https://link.aps.org/doi/10.1103/PhysRevLett.114.145003 (Apr. 2015).

    Article  ADS  Google Scholar 

  479. 479.

    Rykovanov, S.G. et al. Tunable polarization plasma channel undulator for narrow bandwidth photon emission. Phys. Rev. Accel. Beams 19, 90703 (2016).

    Article  ADS  Google Scholar 

  480. 480.

    Luo, J. et al. A compact tunable polarized X–ray source based on laser–plasma helical undulators. Sci. Rep. 6, 29101. doi:https://doi.org/10.1038/srep29101. http://www.nature.com/articles/srep29101 (Sept. 2016).

    Article  ADS  Google Scholar 

  481. 481.

    Andriyash, I.A. et al. An ultracompact X–ray source based on a laser–plasma undulator. Nat. Commun. 5, 4736 (2014).

    Article  ADS  Google Scholar 

  482. 482.

    Ciocci, F., Dattoli, G. & Sabia, E. Transverse Gradient Undulators and FEL operating with large energy spread. Opt. Commun. 356, 582–588 (2015).

    Article  ADS  Google Scholar 

  483. 483.

    Smith, T.I., Madey, J.M.J., Elias, L.R. & Deacon, D.A.G. Reducing the sensitivity of a free–electron laser to electron energy. J. Appl. Phys. 50, 4580–4583 (1979).

    Article  ADS  Google Scholar 

  484. 484.

    Liu, T. et al. Beam Transport Line of the LPA–FEL Facility Based on Transverse Gradient Undulator in Proceedings, 7th Int. Part. Accel. Conf. (IPAC 2016) Busan, Korea, May 8–13, 2016 (2016), THPMB027. doi:https://doi.org/10.18429/JACoW-IPAC2016-THPMB027.

  485. 485.

    Bernhard, A. et al. Radiation emitted by transverse–gradient undulators. Phys. Rev. Accel. Beams 19, 90704. doi:https://doi.org/10.1103/PhysRevAccelBeams.19.090704 (2016).

    Article  ADS  Google Scholar 

  486. 486.

    Ferrario, M., Migliorati, M. & Palumbo, L. Space Charge Effects 331–356, 26 p. http://cds.cern.ch/record/1982426 (Jan. 2016).

    Google Scholar 

  487. 487.

    Van Tilborg, J. et al. Nonuniform discharge currents in active plasma lenses. Phys. Rev. Accel. Beams 20, 32803. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.032803 (2017).

    Article  ADS  Google Scholar 

  488. 488.

    Lindstrøm, C.A. & Adli, E. Analytic plasma wakefield limits for active plasma lenses (2018).

  489. 489.

    Lehe, R., Kirchen, M., Andriyash, I.A., Godfrey, B.B. & Vay, J.-L. A spectral, quasic