Abstract
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years.
Article PDF
Change history
16 February 2021
An Erratum to this paper has been published: https://doi.org/10.1140/epjst/e2021-100018-5
References
Wideroe, R. Über ein neues Prinzip zur Herstellung hoher Spannungen. Arch. für Elektrotechnik 21, 387–406 (1928).
Van der Meer, S. Stochastic Damping of Betatron Oscillations tech. rep(CERN, Geneva, 1972), CERN/ISR–PO/72–31.
Nobel Media AB. The Nobel Prize in Physics 1984 2019. https://www.nobelprize.org/prizes/physics/1984/summary/ (2019).
Tajima, T. & Dawson, J.M. Laser Electron Accelerator. Phys. Rev. Lett. 43, 267–270. doi:https://doi.org/10.1103/PhysRevLett.43.267. http://link.aps.org/doi/10.1103/PhysRevLett.43.267 (1979).
Nobel Media AB. The Nobel Prize in Physics 2018 2019. https://www.nobelprize.org/prizes/physics/2018/summary/ (2019).
European Commission. Open innovation, open science, open to the world – EU Law and Publications https://ec.europa.eu/digital-single-market/en/news/open-innovation-open-science-open-world-vision-europe (2016).
DESY. European Network for Novel Accelerators EuroNNAc3 2019. https://www.euronnac.eu/ (2019).
Henning, W. & Shank, C. Accelerators for America’s future tech. rep. (2010). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Accelerators+for+America?s+Future#0.
Gonsalves, A.J., et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 122, 84801. doi:https://doi.org/10.1103/PhysRevLett.122.084801. https://doi.org/10.1103/PhysRevLett.122.084801 (2019).
Tajima, T. & Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270. doi:https://doi.org/10.1103/PhysRevLett.43.267 (1979).
Geddes, C.G.R., et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541. doi:https://doi.org/10.1038/nature02900 (2004).
Mangles, S.P.D., et al. Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431, 535–538. doi:https://doi.org/10.1038/nature02939 (2004).
Faure, J., et al. A laser – plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544. doi:https://doi.org/10.1038/nature02900.1 (2004).
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).
Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition. Phys. Rev. Lett. 86, 1011–1014. doi:https://doi.org/10.1103/PhysRevLett.86.1011. http://link.aps.org/doi/10.1103/PhysRevLett.86.1011 (Feb. 2001).
Chien, T.-Y., et al. Spatially Localized Self-Injection of Electrons in a Self-Modulated Laser- Wakefield Accelerator by Using a Laser-Induced Transient Density Ramp. Phys. Rev. Lett. 94, 115003. doi:https://doi.org/10.1103/PhysRevLett.94.115003. http://link.aps.org/doi/10.1103/PhysRevLett.94.115003 (2005).
Geddes, C.G.R., et al. Plasma-Density-Gradient Injection of Low Absolute-Momentum- Spread Electron Bunches. Phys. Rev. Lett. 100, 215004. doi: https://doi.org/10.1103/PhysRevLett.100.215004. https://link.aps.org/doi/10.1103/PhysRevLett.100.215004 (May 2008).
Schmid, K., et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. ST Accel. Beams 13, 91301. doi:https://doi.org/10.1103/PhysRevSTAB.13.091301. https://link.aps.org/doi/10.1103/PhysRevSTAB.13.091301 (Sept. 2010).
Clayton, C.E., et al. Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection. Phys. Rev. Lett. 105, 105003. doi:https://doi.org/10.1103/PhysRevLett.105.105003. http://link.aps.org/doi/10.1103/PhysRevLett.105.105003 (2010).
Thaury, C., et al. Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 5, 16310–. doi:https://doi.org/10.1038/srep16310. http://www.nature.com/articles/srep16310http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637871/ (Oct. 2015).
Wenz, J., et al. Dual-energy electron beams from a compact laser-driven accelerator. Nat. Photonics 13, 263–269. doi:https://doi.org/10.1038/s41566-019-0356-z. http://www.nature.com/articles/s41566-019-0356-z (Apr. 2019).
Kuschel, S., et al. Controlling the Self-Injection Threshold in Laser Wakefield Accelerators. Phys. Rev. Lett. 121, 154801. doi: https://doi.org/10.1103/PhysRevLett.121.154801. https://link.aps.org/doi/10.1103/PhysRevLett.121.154801 (Oct. 2018).
Zhao, Q., et al. Ionization injection in a laser wakefield accelerator subject to a transverse magnetic field. New J. Phys. 20, 063031. doi:https://doi.org/10.1088/1367-2630/aac926. http://stacks.iop.org/1367-2630/20/i=6/a=063031?key=crossref.c14dc6c28c72a55dc177dad55fd2b21e (June 2018).
Svystun, E., Assmann, R.W., Dorda, U., Marchetti, B. & Martinez de la Ossa, A. Numerical Studies on Electron Beam Quality Optimization in a Laser-Driven Plasma Accelerator with External Injection at SINBAD for ATHENAe in Proc. 10th Int. Part. Accel. Conf. (Melbourne, Australia, 2019), THPGW023. doi:https://doi.org/10.18429/JACoW-IPAC2019-THPGW023.
Wang, K., et al. Longitudinal compression and transverse matching of electron bunch for external injection LPWA at ESCULAP. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 266–270. https://www.sciencedirect.com/science/article/pii/S0168900217313682 (Nov. 2018).
Hua, J., Wu, Y., Lu, W. External injection from a Linac into a LWFA with ~100% capture efficiency (Conference Presentation) in Laser Accel. Electrons, Protons, Ions V. (eds Esarey, E., Schroeder, C.B. & Schreiber, J. 11037 (SPIE, May, 2019), 31. doi:https://doi.org/10.1117/12.2520697. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11037/2520697/External-injection-from-a-Linac-into-a-LWFA-with-100/10.1117/12.2520697.full.
Leemans, W.P., et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Phys. Rev. Lett. 113, 245002. doi:https://doi.org/10.1103/PhysRevLett.113.245002. http://link.aps.org/doi/10.1103/PhysRevLett.113.245002 (2014).
Couperus, J., et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8, 487. doi:https://doi.org/10.1038/s41467-017-00592-7. http://www.nature.com/articles/s41467-017-00592-7 (Dec. 2017).
Islam, M.R., et al. Near-Threshold Electron Injection in the Laser-Plasma Wakefield Accelerator Leading to Femtosecond Bunches. New J. Phys. 17. doi:https://doi.org/10.1088/1367-2630/17/9/093033 (2015).
Tooley, M.P., et al. Towards Attosecond High-Energy Electron Bunches: Controlling Self- Injection in Laser-Wakefield Accelerators Through Plasma-Density Modulation. Phys. Rev. Lett. 119, 044801. doi:https://doi.org/10.1103/PhysRevLett.119.044801. http://link.aps.org/doi/10.1103/PhysRevLett.119.044801 (July 2017).
Weikum, M., Li, F., Assmann, R., Sheng, Z. & Jaroszynski, D. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 33–36. doi:https://doi.org/10.1016/J.NIMA.2016.01.003. https://www.sciencedirect.com/science/article/pii/S0168900216000061?via%3Dihub (Sept. 2016).
Wang, W.T., et al. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control. Phys. Rev. Lett. 117, 124801. doi:https://doi.org/10.1103/PhysRevLett.117.124801. https://link.aps.org/doi/10.1103/PhysRevLett.117.124801(Sept. 2016).
Brinkmann, R., et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density. Phys. Rev. Lett 118, 214801(2017).
Ferran Pousa, A., Martinez de la Ossa, A., Brinkmann, R. & Assmann, R. Compact Multistage Plasma-Based Accelerator Design for Correlated Energy Spread Compensation. Phys. Rev. Lett. 123, 054801. doi:https://doi.org/10.1103/PhysRevLett.123.054801. https://link.aps.org/doi/10.1103/PhysRevLett.123.054801 (July 2019)
Mehrling, T., Grebenyuk, J., Tsung, F.S., Floettmann, K. & Osterhoff, J. Transverse emittance growth in staged laser-wakefield acceleration. Phys. Rev. ST Accel. Beams 15, 111303. doi:https://doi.org/10.1103/PhysRevSTAB.15.111303. https://link.aps.org/doi/10.1103/PhysRevSTAB.15.111303 (Nov. 2012).
Dornmair, I., Floettmann, K. & Maier, a. R. Emittance conservation by tailored focusing profiles in a plasma accelerator. Phys. Rev. Spec. Top.-Accel. Beams 18, 1–6. doi:https://doi.org/10.1103/PhysRevSTAB.18.041302 (2015).
Xu, X.L., et al. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles. Phys. Rev. Lett. 116, 1–5. doi:https://doi.org/10.1103/PhysRevLett.116.124801 (2016).
Van Tilborg, J., et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802. doi:https://doi.org/10.1103/PhysRevLett.115.184802. https://link.aps.org/doi/10.1103/PhysRevLett.115.184802 (Oct. 2015).
Zhang, C.J., et al. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator. Plasma Phys. Control. Fusion 60, 044013. doi:https://doi.org/10.1088/1361-6587/aaabfd. http://stacks.iop.org/0741-3335/60/i=4/a=044013?key=crossref.64defbb275912d2c3bd43e3bb163231c (Apr. 2018).
Audet, T.L., et al. Electron injector for compact staged high energy accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.. doi:https://doi.org/10.1016/j.nima.2016.01.035. http://www.sciencedirect.com/science/article/pii/S0168900216000516 (2016).
Steinke, S., et al. Staging of laser-plasma accelerators. Phys. Plasmas 23, 056705. doi:https://doi.org/10.1063/1.4948280. http://aip.scitation.org/doi/10.1063/1.4948280(May 2016).
Pathak, V.B., Kim, H.T., Vieira, J., Silva, L.O. & Nam, C.H. All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8, 11772. doi:https://doi.org/10.1038/s41598-018-30095-4. http://www.nature.com/articles/s41598-018-30095-4 (Dec. 2018).
Gonsalves, A.J., et al. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguidea). Phys. Plasmas 22, 056703. doi:https://doi.org/10.1063/1.4919278. http://scitation.aip.org/content/aip/journal/pop/22/5/10.1063/1.4919278 (May 2015).
Shalloo, R.J., et al. Hydrodynamic optical-field-ionized plasma channels. Phys. Rev. E 97, 053203. doi:https://doi.org/10.1103/PhysRevE.97.053203. https://link.aps.org/doi/10.1103/PhysRevE.97.053203 (May 2018).
Blumenfeld, I., et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744. doi:https://doi.org/10.1038/nature05538. http://www.nature.com/nature/journal/v445/n7129/full/nature05538.html (2007).
Litos, M., et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95. doi:https://doi.org/10.1038/nature13882. http://www.nature.com/articles/nature13882 (Nov. 2014).
Litos, M., et al. 9 GeV energy gain in a beam-driven plasma wakefield accelerator. Plasma Phys. Control. Fusion 58, 034017. doi:https://doi.org/10.1088/0741-3335/58/3/034017. http://stacks.iop.org/0741-3335/58/i=3/a=034017?key=crossref.62a219d7ccc3fd7f12ea5cb18a4f3d73 (Mar. 2016).
Manahan, G.G., et al. Single-Stage Plasma-Based Correlated Energy Spread Compensation for Ultrahigh 6D Brightness Electron Beams. Nat. Commun. 8, 12. doi:https://doi.org/10.1038/ncomms15705. http://www.nature.com/doinder/10.1038/ncomms15705 (2017)
Loisch, G., et al. Observation of High Transformer Ratio Plasma Wakefield Acceleration. Phys. Rev. Lett. 121, 064801. doi:https://doi.org/10.1103/PhysRevLett.121.064801. https://link.aps.org/doi/10.1103/PhysRevLett.121.064801 (Aug.2018).
Doebert, S. & al., E. (2019): The Proton Driven Advanced Wake Field Acceleration Experiment (AWAKE) at CERN in Proc. 10th Int. Part. Accel. Conf. (Melbourne, Australia, 2019), 642–646. doi:https://doi.org/10.18429/JACoW-LINAC2018-TH1A04.
Gessner, S., et al. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator. Nat. Commun. 7, 11785. doi:https://doi.org/10.1038/ncomms11785. http://www.nature.com/articles/ncomms11785 (Sept. 2016).
Corde, S., et al. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524, 442–445. doi:https://doi.org/10.1038/nature14890. http://www.nature.com/articles/nature14890 (Aug. 2015).
Martinez de la Ossa, A., Mehrling, T.J., Schaper, L., Streeter, M.J.V. & Osterhoff, J. Wakefield-induced ionization injection in beam-driven plasma accelerators. Phys. Plasmas 22, 093107. doi:https://doi.org/10.1063/1.4929921. http://aip.scitation.org/doi/10.1063/1.4929921 (Sept. 2015)
Martinez de la Ossa, A., et al. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators. Phys. Rev. Accel. Beams 20, 091301. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.091301. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.091301 (Sept. 2017).
Hidding, B., et al. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration in AIP Conf. Proc. 1507 (American Institute of Physics, Dec. 2013)570–575. doi:https://doi.org/10.1063/1.4773760. http://aip.scitation.org/doi/abs/10.1063/1.4773760.
Schlenvoigt, H.-P., et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008).
Fuchs, M., et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826–829 (2009).
Anania, M.P., et al. Transport of ultra-short electron bunches in a free-electron laser driven by a laser-plasma wakefield accelerator in SPIE Eur Opt. Optoelectron. 735916 (2009).
Lambert, G., et al. Progress on the generation of undulator radiation in the UV from a plasma-based electron beam in Proceed. FEL conf., Nara, Japan (2012), 2.
Nakajima, K. Compact X-ray sources: Towards a table-top free-electron laser. Nat. Phys. 4, 92–93(2008).
Grüner, F., et al. Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl. Phys. B 86, 431–435 (2007).
Maier, A.R., et al. Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2, 31019 (2012).
Loulergue, A., et al. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 23028(2015).
Huang, Z., Ding, Y. & Schroeder, C.B. Compact X-ray free-electron laser from a laserplasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 1–5. doi:https://doi.org/10.1103/PhysRevLett.109.204801 (2012).
André, T., et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 9, 1334 (2018).
Delbos, N., et al. LUX – A laser–plasma driven undulator beamline. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip (2018).
Bernhard, A., et al. Progress on experiments towards LWFA-driven transverse gradient undulator-based FELs. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 391–397 (2018).
Cole, J.M., et al. High-resolution mCT of a mouse embryo using a compact laser-driven X-ray betatron source. Proc. Natl. Acad. Sci. 115, 6335–6340. doi:https://doi.org/10.1073/PNAS.1802314115. https://www.pnas.org/content/115/25/6335#sec-6 (June 2018).
Döpp, A., et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light Sci. Appl. 6, e17086–e17086. doi:https://doi.org/10.1038/lsa.2017.86. http://www.nature.com/articles/lsa201786 (Nov. 2017).
Kneip, S., et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980–983. doi:https://doi.org/10.1038/nphys1789. http://www.nature.com/articles/nphys1789 (Dec. 2010).
Cipiccia, S., et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871. doi:https://doi.org/10.1038/nphys2090. http://www.nature.com/articles/nphys2090 (Nov. 2011).
Albert, F., et al. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. Phys. Rev. Lett. 118, 134801. doi:https://doi.org/10.1103/PhysRevLett.118.134801. http://link.aps.org/doi/10.1103/PhysRevLett.118.134801 (Mar. 2017).
Guo, B., et al. Generation of Coherent Monochromatic Betatron Radiation by Laser-triggered Ionization Injection in Plasma Accelerators. in 2018 IEEE Adv. Accel. Concepts Work. (IEEE, Aug. 2018), 1–4. doi:https://doi.org/10.1109/AAC.2018.8659443. https://ieeexplore.ieee.org/document/8659443/.
Kneip, S., et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99, 093701. doi:https://doi.org/10.1063/1.3627216. http://aip.scitation.org/doi/10.1063/1.3627216 (Aug. 2011).
Cole, J.M., et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 5, 13244. doi:https://doi.org/10.1038/srep13244. http://www.nature.com/articles/srep13244 (Oct. 2015).
Schwoerer, H., Liesfeld, B., Schlenvoigt, H.-P., Amthor, K.-U. & Sauerbrey, R. Thomson- Backscattered X Rays From Laser-Accelerated Electrons. Phys. Rev. Lett. 96, 014802. doi:https://doi.org/10.1103/PhysRevLett.96.014802. https://link.aps.org/doi/10.1103/PhysRevLett.96.014802 (Jan. 2006).
Chen, S., et al. MeV-Energy X Rays from Inverse Compton Scattering with Laser-Wakefield Accelerated Electrons. Phys. Rev. Lett. 110, 155003. doi:https://doi.org/10.1103/PhysRevLett.110.155003. https://link.aps.org/doi/10.1103/PhysRevLett.110.155003 (Apr. 2013).
Yu, C., et al. Ultrahigh brilliance quasi-monochromatic MeV g-rays based on selfsynchronized all-optical Compton scattering. Sci. Rep. 6, 29518. doi:https://doi.org/10.1038/srep29518. http://www.nature.com/articles/srep29518 (Sept. 2016).
Geddes, C.G.R., et al. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization. Nucl. Instrum. Meth. B 350, 116–121. doi:https://doi.org/10.1016/j.nimb.2015.01.013. http://www.sciencedirect.com/science/article/pii/S0168583X15000269 (2015).
DesRosiers, C., Moskvin, V., Cao, M., Joshi, C.J. & Langer, M. Laser-plasma generated very high energy electrons in radiation therapy of the prostate in (eds Neev, J., Nolte, S., Heisterkamp, A. & Schaffer, C. B.) 6881 (International Society for Optics and Photonics, Feb. 2008), 688109. doi:https://doi.org/10.1117/12.761663. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.761663.
Nicolai, M., et al. Realizing a laser-driven electron source applicable for radiobiological tumor irradiation. Appl. Phys. B 116, 643–651. doi:https://doi.org/10.1007/s00340-013-5747-0. http://link.springer.com/10.1007/s00340-013-5747-0 (Sept. 2014).
Chiu, C., et al. Laser electron accelerators for radiation medicine: A feasibility study. Med. Phys. 31, 2042–2052. doi:https://doi.org/10.1118/1.1739301. http://doi.wiley.com/10.1118/1.1739301 (June 2004).
Schroeder, C.B., Esarey, E., Geddes, C.G.R., Benedetti, C. & Leemans, W.P. Physics considerations for laser-plasma linear colliders. Phys. Rev. Spec. Top.-Accel. Beams 13, 101301. doi:https://doi.org/10.1103/PhysRevSTAB.13.101301. https://link.aps.org/doi/10.1103/PhysRevSTAB.13.101301 (Oct. 2010).
Schroeder, C., Benedetti, C., Esarey, E. & Leemans, W. Laser-plasma-based linear collider using hollow plasma channels. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 113–116. doi:https://doi.org/10.1016/J.NIMA.2016.03.001. https://www.sciencedirect.com/science/article/pii/S0168900216002667?via%3Dihub (Sept. 2016)
European Commission. Open innovation, open science, open to the world-EU Law and Publications https://ec.europa.eu/digital- single- market/en/news/open-innovation-open-science-open-world-vision-europe (2016).
LBG OIS Center. Why Open Innovation in Science? 2019. https://ois.lbg.ac.at/en/about/mission-history (2019).
OpenInnovation.eu. Open Innovation-What is Open Innovation? 2019. https://www.openinnovation.eu/open-innovation/ (2019).
Research England. Research and knowledge exchange funding for 2019-20 tech. rep. (2019), RE–P–2019–05. https://re.ukri.org/documents/finance/2019-20-funding-allocations/research-and-knowledge-exchange-funding-for-2019-20/.
European Commission. European Cloud Initiative - Building a competitive data and knowledge economy in Europe tech. rep. (2016), COM(2016) 178. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0178&from=EN.
Weikum, M.K., et al. Status of the Horizon 2020 EuPRAXIA conceptual design study. J. Phys. Conf. Ser. 1350, doi:https://doi.org/10.1088/1742-6596/1350/1/012059 (Dec. 2019).
Argyropoulos, T., et al. Design, fabrication, and high-gradient testing of an X -band, travelingwave accelerating structure milled from copper halves. Phys. Rev. Accel. Beams 21, 061001. doi:https://doi.org/10.1103/PhysRevAccelBeams.21.061001. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061001 (June 2018).
Gizzi, L.A., et al. A Viable Laser Driver for a User Plasma Accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 58–66. doi:https://doi.org/10.1016/j.nima.2018.02.089. https://linkinghub.elsevier.com/retrieve/pii/S0168900218302717(Nov. 2018).
Nanni, E.A., et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486. doi:https://doi.org/10.1038/ncomms9486. http://www.nature.com/articles/ncomms9486 (Dec. 2015).
Peralta, E.A., et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94. doi:https://doi.org/10.1038/nature12664. http://www.nature.com/articles/nature12664 (Nov. 2013).
Korn, G. Future perspectives of ELI Beamlines Hamburg, Germany, 2018. https://ard.desy.de/sites2009/site_ard/content/e157650/e271962/GeorgKorn_ELI.pdf
Office of High Energy Physics, Office of Science & U.S. Department of Energy. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory tech. rep. (2015), SLAC–R–1067. http://slac.stanford.edu/pubs/slacreports/reports21/slac-r-1067.pdf
SLAC National Accelerator Laboratory. Facility for Advanced Accelerator Experimental Tests (FACET)-Proposals Overview 2019. https://facet.slac.stanford.edu/proposals (2019),
Dorda, U. SINBAD-Status & Plans in Beschleuniger-Betriebsseminar 2019 (Travemuende, Germany, 2019)https://indico.desy.de/indico/event/21928/session/5/contribution/1/material/slides/0.pdf
Deutsches Elektronensynchrotron DESY. FLASHFORWARD-Experimental Proposals 2018. https://forward.desy.de/experimental_proposals/ (2019),
Vaccarezza, C. The SPARC_LAB Thomson Source in Eur. Adv. Accel. Concepts Work. (Elba, Italy, 2015). https://agenda.infn.it/event/8146/contributions/71629/attachments/51945/61358/The_SPARC_LAB_Thomson_SOURCE.pptx.
CERN. CLEAR-Beam Line Description https://clear.web.cern.ch/content/beam- line-description (2019).
Ferran Pousa, A., Aßmann, R. & Martinez de la Ossa, A. VisualPIC: a new data visualizer and post-processor for particle-in-cell codes. Proc. IPAC 2017, 1696–1698. doi:https://doi.org/10.18429/JACOW-IPAC2017-TUPIK007. http://jacow.org/ipac2017/doi/JACoW-IPAC2017-TUPIK007.html (2017).
Rocca, J.J., et al. in Free Electron Lasers 2002 515–522 (Elsevier, 2003).
McPherson, A., et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B 4, 595–601 (1987).
Ferray, M., et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 21, L31 (1988).
Paul, P.M., et al. Observation of a train of attosecond pulses from high harmonic generation. Science (80-.). 292, 1689–1692 (2001).
Dromey, B., et al. High harmonic generation in the relativistic limit. Nat. Phys. 2, 456 (2006).
Couprie, M.-E. & Filhol, J.-M. (2008): X radiation sources based on accelerators. Comptes Rendus Phys. 9, 487–506.
Couprie, M.E. New generation of light sources: present and future. J. Electron Spectros. Relat. Phenomena 196, 3–13 (2014).
Couprie, M.E. Short wavelength free-electron laser sources. Comptes Rendus l’Académie des Sci. IV-Physics 1, 329–345 (2000).
Madey, J.M.J. Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field. J. Appl. Phys. 42, 1906–1913. doi:https://doi.org/10.1063/1.1660466. https://doi.org/10.1063/1.1660466 (1971).
Schawlow, A.L. & Townes, C.H. Infrared and optical masers. Phys. Rev. 112, 1940 (1958).
Maimain, T. Stimulated optical radiation in Ruby. Nature 187, 493–494 (1960).
Deacon, D.A.G., et al. First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977).
Emma, P., et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647. doi:https://doi.org/10.1038/nphoton.2010.176. http://www.nature.com/doifinder/10.1038/nphoton.2010.176 (2010).
Ishikawa, T., et al. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics 6, 540–544 (2012).
Kang, H.-S., et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708 (2017).
Milne, C.J., et al. SwissFEL: The Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017).
Weise, H. & Decking, W. Commissioning and first lasing of the European XFEL in Proc. FEL2017, St. Fe, NM, USA (2017).
Ackermann, W., et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007).
Allaria, E., et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699–704 (2012).
Wang, G. Commissioning Status of the Dalian Cohernet Light Source. in 8th Int. Part. Accel. Conf.(IPAC’17), Copenhagen, Denmark, 14–19 May, 2017 (2017), 2709–2712.
McNeil, B. Free electron lasers: First light from hard X-ray laser. Nat. Photonics 3, 375–377 (2009).
Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 15006 (2016).
Bostedt, C., et al. Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 15007 (2016).
Chapman, H.N., et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).
Seibert, M.M., et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011).
Kirian, R.A., et al. Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr. Sect. A Found. Crystallogr. 67, 131–140 (2011).
Young, L., et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).
Berrah, N., et al. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs). J. Mod. Opt. 57, 1015–1040 (2010).
Doumy, G., et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 83002–83006 (2011).
Richter, M., Bobashev, S.V., Sorokin, A.A. & Tiedtke, K. Multiphoton ionization of atoms with soft X-ray pulses. J. Phys. B At. Mol. Opt. Phys. 43, 194005–194012 (2010).
Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).
Meyer, M., Costello, J.T., Düsterer, S., Li, W.B. & Radcliffe, P. Two-colour experiments in the gas phase. J. Phys. B At. Mol. Opt. Phys. 43, 194006–194015 (2010).
Günther, C.M., et al. Sequential femtosecond X-ray imaging. Nat. Photonics 5, 99–102 (2011).
Roy, S., et al. Lensless X-ray imaging in reflection geometry. Nat. Photonics 5, 243–245 (2011).
Glownia, J.M., et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).
Galtier, E., et al. Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20 #fs microfocused 92 #eV free-electron-laser pulses. Phys. Rev. Lett. 106, 164801–164806 (2011).
Molodozhentsev, A. & Pribyl, L. Progress on the generation of undulator radiation in the UV from a plasma-based electron beam in Proc. IPAC2016, Busan, Korea (2016), 4005–4007.
Marteau, F., et al. Variable high gradient permanent magnet quadrupole (QUAPEVA). Appl. Phys. Lett. 111, 253503 (2017).
Couprie, M.-E., Loulergue, A., Labat, M., Lehe, R. & Malka, V. Towards a free electron laser based on laser plasma accelerators. J. Phys. B At. Mol. Opt. Phys. 47, 234001 (2014).
ALEGRO Collaboration. Towards an Advanced Linear International Collider 2019. https://arxiv.org/abs/1901.10370.
Liu, J.S., et al. All-Optical Cascaded Laser Wakefield Accelerator Using Ionization-Induced Injection. Phys. Rev. Lett. 107, 35001. doi:https://doi.org/10.1103/PhysRevLett.107.035001. http://link.aps.org/doi/10.1103/PhysRevLett.107.035001(2011).
U.S. Department of Energy-Office of Science. Advanced Accelerator Development Strategy Report in DOE Adv. Accel. Concepts Res. Roadmap Work. Febr. 2 – 3, 2016 (2016).
PWASC. Plasma wakefield accelerator steering committee 2019. http://pwasc.org.uk/ (2019).
Hogan, M.J., et al. Plasma wakefield acceleration experiments at FACET. New J. Phys. 12, 055030. doi:https://doi.org/10.1088/1367-2630/12/5/055030. http://stacks.iop.org/1367-2630/12/i=5/a=055030?key=crossref.72f665d9f313301607de16ff3f559a55 (May 2010).
U.S. Department of Energy. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory tech. rep. (SLAC National Accelerator Laboratory, 2016), SLAC–R–1072.
Alejo, A., Walczak, R. & Sarri, G. Laser-driven high-quality positron sources as possible injectors for plasma-based accelerators. Sci. Rep. 9, 5279. doi:https://doi.org/10.1038/s41598-019-41650-y. http://www.nature.com/articles/10.1038/s41598-019-41650-y (Dec. 2019)
Keeble, D.J., et al. Identification of A-and B -Site Cation Vacancy Defects in Perovskite Oxide Thin Films. Phys. Rev. Lett. 105, 226102. doi:https://doi.org/10.1103/PhysRevLett.105.226102. https://link.aps.org/doi/10.1103/PhysRevLett.105.226102 (Nov. 2010).
Helmholtz-Zentrum Dresden-Rossendorf. Positronen-Annihilations-Spektroskopie am HZDR 2018. https://www.hzdr.de/db/Cms?pNid=3225 (2019).
Helmholtz-Zentrum Dresden-Rossendorf. The Slow-Positron System of Rossendorf-SPONSOR 2019. https://www.hzdr.de/db/Cms?pOid=35320&pNid=3225 (2019).
Heinz Maier-Leibnitz-Zentrum. NEPOMUC-Neutron induced positron source Munich 2019. https://www.mlz-garching.de/nepomuc.
Heinz Maier-Leibnitz-Zentrum. PLEPS-Pulsed low energy positron system 2019. https://www.mlz-garching.de/pleps..
Sarri, G., et al. Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams. Phys. Rev. Lett. 110, 255002. doi:https://doi.org/10.1103/PhysRevLett.110.255002. https://link.aps.org/doi/10.1103/PhysRevLett.110.255002 (June 2013).
Sarri, G., et al. Spectral and spatial characterisation of laser-driven positron beams. Plasma Phys. Control. Fusion 59, 014015. doi:https://doi.org/10.1088/0741-3335/59/1/014015. http://stacks.iop.org/0741-3335/59/i=1/a=014015?key=crossref.5e376211abe22b4718389b5279783e9e (Jan. 2017).
Sarri, G., et al. Overview of laser-driven generation of electron–positron beams. J. Plasma Phys. 81, 455810401. doi:https://doi.org/10.1017/S002237781500046X. https://www.cambridge.org/core/product/identifier/S002237781500046X/type/journal_article (Aug. 2015)
Deutsches Elektronensychrotron-DESY. FLASH http://photon-science.desy.de/facilities/flash/index_eng.html.
SwissFEL Collaboration. SwissFEL Conceptual Design Report tech. rep. (). https://www.psi.ch/sites/default/files/import/swissfel_old/CurrentSwissFELPublicationsEN/SwissFEL_CDR_V20_23.04.1
Wilkinson, M.D., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018. doi:https://doi.org/10.1038/sdata.2016.18. http://www.nature.com/articles/sdata201618 (Dec. 2016).
e-Infrastructure Reflection Group. e-IRG Roadmap 2016 tech. rep. (2016), Version 5.3. http://e-irg.eu/documents/10920/12353/Roadmap+2016.pdf.
UK Data Service. The ‘FAIR’ principles for scientific data management. https://www.ukdataservice.ac.uk/news-and-events/newsitem/?id=4615 (June 2016).
Alesini, D., Anania, M.P., Artioli, M. & Bacci, A. EuPRAXIA@SPARCLAB Conceptual Design Report tech. rep. LNF-1803 (Instituto Nazionale di Fisica Nuclear INFN, 2018). http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-18-03-LNF.pdf.
Ferrario, M., et al. EuPRAXIA@ SPARC_LAB Design study towards a compact FEL facility at LNF. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 134–138 (2018).
Wuensch, W. Advances in High Gradient Accelerating Structures and in the Understanding Gradient Limits in Proc. Int. Part. Accel. Conf. IPAC 17 (2017).
Bisesto, F.G., et al. The FLAME laser at SPARC_LAB. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 452–455 (2018).
Institut Curie. Institut Curie – Recombination, Repair and Cancer: Team Dutreix https://science.institut-curie.org/research/biology-chemistry-of-radiations-cell-signaling-and-cancer-axis/umr-3347-normal-and-pathological-signaling/team-dutreix/
Derouillat, J., et al. SMILEI: A Collaborative, Open-Source, Multi-Purpose Particle-in-Cell Code for Plasma Simulation 222, 351–373. doi:https://doi.org/10.1016/j.cpc.2017.09.024. http://arxiv.org/abs/1702.05128.
Intense Laser Irradiation Laboratory. Laboratorio di Laser Intensi – Istituto Nazionale di Ottica – Consiglio Nazionale delle Ricerche 2019. http://research.ino.it/Groups/ilil/it/about_it/ (2019).
Gizzi, L.A., et al. Laser-Plasma Acceleration: First Experimental Results from the Plasmon- X Project in Charg. Neutral Part. Channeling Phenom. (WORLD SCIENTIFIC, Apr. 2010), 485–501. doi:https://doi.org/10.1142/9789814307017_0045. http://www.worldscientific.com/doi/abs/10.1142/9789814307017_0045.
Tomassini, P., et al. The resonant multi-pulse ionization injection. Phys. Plasmas 24, 103120. doi:https://doi.org/10.1063/1.5000696. http://aip.scitation.org/doi/10.1063/1.5000696 (Oct. 2017).
Nghiem, P.A., et al. A Step Toward A Plasma-Wakefield Based Accelerator with High Beam Quality. J. Phys. Conf. Ser.. 1350. doi:https://doi.org/10.1088/1742-6596/1350/1/012068 (2019).
Rossi, A., et al. A concept for an active plasma undulator in Eur. Adv. Accel. Concepts Work (Elba, Italy, 2019).
European Commission. HORIZON2020-Work Programme 2018–2020: Technical Readiness Levels (TRL) tech. rep. (2017), C(2017)7124. https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820- annex-g-trl_en.pdf.
Particle Physics Project Prioritization Panel (P5). .uilding for Discovery – Strategic Plan for U.S. Particle Physics in the Global Context tech. rep (2014), http://inspirehep.net/record/1299183/files/FINAL_P5_Report_053014.pdf.
Ellis, R. & al., E. Physics Briefing Book: European Strategy for Particle Physics Preparatory Group tech. rep. (CERN, Geneva, Switzerland, 2019), CERN–ESU–004. http://cds.cern.ch/record/2691414/files/Briefing_Book_Final.pdf.
League of European Accelerator-based Photon Sources (LEAPS) LEAPS Strategy 2030 tech. rep. (2018). https://www.leaps-initiative.eu/sites/sites_custom/site_leaps-initiative/content/e49102/e65282/e65283/LEAPS_Strategy2030_180611.pdf.
Hidding, B. et al. Plasma Wakefield Accelerator Research 2019-2040: A communitydriven UK roadmap compiled by the Plasma Wakefield Accelerator Steering Committee (PWASC) 2019. https://www.researchgate.net/publication/332553759_Plasma_Wakefield_Accelerator_Research_2019_-_2040_A_community-driven_UK_roadmap_compiled_by_the_Plasma_Wakefield_Accelerator_Steering_Committee_PWASC
European Network for Novel Accelerators. A European Roadmap tech. rep. (2017). (published as EU EuCARD2 deliverable report). https://edms.cern.ch/ui/file/1325207/2/EuCARD2_Del7-2-Final.pdf.
Cros, B., Muggli, P. & (on behalf of the ALEGRO collaboration). ALEGRO input for the 2020 update of the European Strategy 2019. https://arxiv.org/abs/1901.08436
Esarey, E., Schroeder, C.B. & Leemans, W.P. Physics of laser–driven plasma–based electron accelerators. Rev. Mod. Phys. 81, 1229–1285. doi:https://doi.org/10.1103/RevModPhys.81.1229 (2009).
Steinke, S., et al. Multistage coupling of independent laser–plasma accelerators. Nature 530, 190–193. doi:https://doi.org/10.1038/nature16525. http://www.nature.com/articles/nature16525 (Feb. 2016).
Nakajima, K. Seamless multistage laser–plasma acceleration toward future high–energy colliders. Light Sci. Appl. 7 (2018).
Cros, B., et al. Laser plasma acceleration of electrons with multi–PW laser beams in the frame of CILEX. Nucl. Instr. Meth. Phys. Res., Sect. A 740, 27–33. doi:https://doi.org/10.1016/j.nima.2013.10.090 (2014).
Leemans, W.P., et al. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator. AIP Conf. Proc. 1299 (2010).
Lu, W., et al. Generating multi–GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 61301. doi:https://doi.org/10.1103/PhysRevSTAB.10.061301. http://link.aps.org/doi/10.1103/PhysRevSTAB.10.061301 (June 2007).
Lu, W., Huang, C., Zhou, M., Mori, W.B. & Katsouleas, T. Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime. Phys. Rev. Lett. 96, 165002. doi:https://doi.org/10.1103/PhysRevLett.96.165002. https://link.aps.org/doi/10.1103/PhysRevLett.96.165002 (Apr. 2006).
Bane, K., Wilson, P. & Weiland, T. Wake fields and wake field acceleration tech. rep. (Stanford Linear Accelerator Center, 1984), SLAC–PUB–3528.
Katsouleas, T. Physical mechanisms in the plasma wake–field accelerator. Phys. Rev. A 33, 2056–2064. doi:https://doi.org/10.1103/PhysRevA.33.2056. http://link.aps.org/doi/10.1103/PhysRevA.33.2056 (Mar. 1986).
Chen, P., Su, J.J., Dawson, J.M., Bane, K.L.F. & Wilson, P.B. Energy Transfer in the Plasma Wake-Field Accelerator. Phys. Rev. Lett. 56, 1252–1255. doi:https://doi.org/10.1103/PhysRevLett.56.1252. https://link.aps.org/doi/10.1103/PhysRevLett.56.1252 (Mar. 1986).
Bane, K.L.F., Chen, P. & Wilson, P.B. On Collinear Wake Field Acceleration. IEEE Trans. Nucl. Sci. 32, 3524–3526. doi:https://doi.org/10.1109/TNS.1985.4334416. http://ieeexplore.ieee.org/document/4334416/ (Oct. 1985).
Jiang, B., Jing, C., Schoessow, P., Power, J. & Gai, W. Formation of a novel shaped bunch to enhance transformer ratio in collinear wakefield accelerators. Phys. Rev. Spec. Top.–Accel. Beams 15, 011301.doi:https://doi.org/10.1103/PhysRevSTAB.15.011301. https://link.aps.org/doi/10.1103/PhysRevSTAB.15.011301 (Jan. 2012).
Tsakanov, V.M. On collinear wake field acceleration with high transformer ratio. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 432, 202–213 (1999).
Van der Meer, S. Improving the power efficiency of the plasma wakefield accelerator tech. rep. CERN–PS–85–65–AA; CLIC–Note–3 (CERN, Geneva1985), CERN–PS–85–65–AA, CLIC–Note–3.
Floettmann, K. Some basic features of the beam emittance. Phys. Rev. Spec. Top.–Accel. Beams 6. doi:https://doi.org/10.1103/PhysRevSTAB.6.034202 (2003).
Courant, E.D. & Snyder, H.S. Theory of the Alternating-Gradient Synchrotron. An. Phys. 3 (1958).
Rittershofer, W., Schroeder, C.B., Esarey, E., Grüner, F.J. & Leemans, W.P. Tapered plasma channels to phase–lock accelerating and focusing forces in laser–plasma accelerators. Phys. Plasmas 17, 63104. doi:https://doi.org/10.1063/1.3430638. https://doi.org/10.1063/1.3430638 (June 2010).
Desforges, F.G., et al. Reproducibility of electron beams from laser wakefield acceleration in capillary tubes. Nucl. Instrum. Meth. A 740, 54–59. doi:https://doi.org/10.1016/j.nima.2013.10.062. http://www.sciencedirect.com/science/article/pii/S0168900213014538 (2013).
Desforges, F.G. Injection induite par ionisation pour l’accélération laser–plasma dans des tubes capillaires diélectriques. PhD thesis(Université Paris–Sud, 2015).
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. 56, 219–221 (1985).
Heyl, C.M., Arnold, C.L., Couairon, A. & L’Huillier, A. Introduction to macroscopic power scaling principles for high–order harmonic generation. J. Phys. B At. Mol. Opt. Phys. 50, 013001doi:https://doi.org/10.1088/1361-6455/50/1/013001. http://stacks.iop.org/0953–4075/50/i=1/a=013001?key=crossref.7fde8adcd056897664c8553591f789d8 (Jan. 2017).
Giambruno, F., Radier, C., Rey, G. & Chériaux, G. Design of a 10PW (150J/15fs) peak power laser system with Ti:sapphire medium through spectral control. Appl. Opt. 50, 2617–2621. doi:https://doi.org/10.1364/AO.50.002617. http://ao.osa.org/abstract.cfm?URI=ao-50-17-2617 (2011)
Ros, D., et al. LASERIX : A Multi X–Ray/XUV Beamline High Repetition–Rate Facility. X–Ray Lasers 2006, Springer, Dordr. (2007).
Leemans, W.P., et al. (2013): Bella Laser and Operations in Proc. PAC2013, Pasadena, CA USA (2013), THYAA1.
Lee, S.K., Sung, H.J., Lee, H.W., Yoo, J.Y. & Nam, C.H. Extreme light at CoReLSand its application to single cycle pulse generation. https://indico.cern.ch/event/531896/contributions/2223472/attachments/1328915/1996120/LEE_SK.pdf.
Wang, Z., et al. High–contrast 1.16 PW Ti: sapphire laser system combined with a doubled chirped–pulse amplification scheme and a femtosecond optical–parametric amplifier. Opt. Lett. 36, 3194–3196 (2011).
Keppler, S., et al. Full characterization of the amplified spontaneous emission from a diodepumped high–power laser system. Opt. Express 22, 11228–11235 (2014).
Siebold, M., Roeser, F., Loeser, M., Albach, D. & Schramm, U. PEnELOPE–a high peak–power diode–pumped laser system for laser–plasma experiments in High–Power, High– Energy, High–Intensity Laser Technol. Res. Using Extrem. Light Enter. New Front. with Petawatt–Class Lasers, Proc. SPIE Vol. 8780 (2013), 878005.
Liebetrau, H., et al. Ultra–high contrast frontend for high peak power fs–lasers at 1030 nm. Opt. Express 22, 24776–24786 (2014).
Gaul, E., et al. Improved pulse contrast on the Texas Petawatt Laser in. J. Phys. Conf. Ser. 717, 12092 (2016).
Ross, I.N., et al. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Appl. Opt. 39, 2422–2427 (2000).
Dubietis, A., Butkus, Rytis & Algis, P.P. Trends in Chirped Pulse Optical Parametric Amplification. IEEE J. Sel Top. Quantum Electron. 12, 163–172 (2006).
Xie, X., et al. Multi petawatt laser design for the SHENGUANG II laser facility in High–Power, High–Energy, High–Intensity Laser Technol. II 9513 (2015), 95130A.
Danson, C., Hillier, D., Hopps, N. & Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3, e3 (2015).
McNeil, B.W.J. & Thompson, N.R. X-Ray Free-Electron Lasers. Nat. Photonics 4, 814–821. doi:https://doi.org/10.1038/nphoton.2010.239. http://www.nature.com/doifinder/10.1038/nphoton.2010.239 (2010).
Haus, H. Noise in free–electron laser amplifier. IEEE J. Quantum Electron. 17, 1427–1435 (1981).
Dattoli, G., Marino, A., Renieri, A. & Romanelli, F. Progress in the Hamiltonian picture of the free–electron laser. IEEE J. Quantum Electron. 17, 1371–1387 (1981).
Bonifacio, R., Pellegrini, C. & Narducci, L.M. Collective instabilities and high–gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).
Kim, K.-J. An analysis of self–amplified spontaneous emission. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 250, 396–403 (1986).
Dattoli, G., Ottaviani, P.L. & Pagnutti, S. Booklet for FEL design: a collection of practical formulae. Ed. Sci. Frascati (2007).
Walker, P.A., et al. EuPRAXIA Deliverable Report 1.2 Report defining preliminary study concept 2016.
Toci, G., et al. EuPRAXIA Deliverable Report: D4.1 Benchmarking of existing technology and comparison with the requirements tech. rep (EuPRAXIA, 2016).
Nagymihaly, R.S., et al. Liquid–cooled Ti: Sapphire thin disk amplifiers for high average power 100–TW systems. Opt. Express 25, 6664. doi:https://doi.org/10.1364/OE.25.006664. https://www.osapublishing.org/abstract.cfm?URI=oe-25-6-6664 (Mar. 2017).
Chvykov, V., Nagymihaly, R.S., Cao, H., Kalashnikov, M. & Osvay, K. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti: Sa systems (EDP–TD). Opt. Express 24, 3721. doi:https://doi.org/10.1364/OE.24.003721. https://www.osapublishing.org/abstract.cfm?URI=oe-24-4-3721 (Feb. 2016).
Chu, Y., et al. High–contrast 20 Petawatt Ti:sapphire laser system. Opt. Express 21, 29231. doi:https://doi.org/10.1364/OE.21.029231. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-24-29231 (Dec. 2013).
Gizzi, L., et al. A viable laser driver for a user plasma accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 58–66. doi:https://doi.org/10.1016/J.NIMA.2018.02.089. https://www.sciencedirect.com/science/article/pii/S0168900218302717?via%3Dihub (Nov. 2018).
Morice, O. Miro: Complete modeling and software for pulse amplification and propagation in high–power laser systems. Opt. Eng. 42, 1530. doi:https://doi.org/10.1117/1.1574326. http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.1574326 (June 2003).
Gizzi, L., et al. A New Line for Laser-Driven Light Ions Acceleration and Related TNSA Studies. Appl. Sci. 7, 984. doi:https://doi.org/10.3390/app7100984. http://www.mdpi.com/2076-3417/7/10/984 (Sept. 2017).
Toci, G., et al. Conceptual Design of a Laser Driver for a Plasma Accelerator User Facility. Instruments 3, 40 (2019).
Ferrara, P., et al. 3–D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment. Opt. Express 22, 5375. doi:https://doi.org/10.1364/OE.22.005375. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-5-5375 (Mar. 2014).
Alessi, D.A., Nguyen, H.T., Britten, J.A., Rosso, P.A. & Haefner, C. Low–dispersion low–loss dielectric gratings for efficient ultrafast laser pulse compression at high average powers. Opt. Laser Technol. 117, 239–243. doi:https://doi.org/10.1016/J.OPTLASTEC.2019.04.005. https://www.sciencedirect.com/science/article/pii/S0030399218320218 (Sept. 2019)
De Vido, M., et al. A scalable high–energy diode–pumped solid state laser for laser–plasma interaction science and applications. J. Phys. Conf. Ser. 717, 012090. doi:https://doi.org/10.1088/1742-6596/717/1/012090. http://stacks.iop.org/1742-6596/717/i=1/a=012090?key=crossref.7a785c45870b7afba9fa905eb32e8ec2 (May (2016).
Leemans, W. Progress on Petawatt level experiments at BELLA Center for electron and ion acceleration Elba, Italy, 2017.
Mathieu, F., et al. Device and method for the measurement of inclination and angular stability of electromagnetic radiation beams (patent no: 102019000020562) 2019.
Galvin, T., et al. Scaling of petawatt–class lasers to multi–kHz repetition rates in Proc. SPIE 11033, High–Power, High–Energy, High–Intensity Laser Technol. IV (2019), 1103303. doi:https://doi.org/10.1117/12.2520981.
Honea, E.C., et al. 115 W Tm:YAG CW diode–pumped solid–state laser in Adv. Solid State Lasers. (OSA, Washington, D.C., Jan. 1997), HP8. doi:https://doi.org/10.1364/ASSL.1997.HP8. https://www.osapublishing.org/abstract.cfm?URI=ASSL–1997–HP8.
Dergachev, A., et al. Review of Multipass Slab Laser Systems. IEEE J. Sel. Top. Quantum Electron. 13, 647–660 13, 647–660doi:https://doi.org/10.1109/JSTQE.2007.897177. http://ieeexplore.ieee.org/document/4244415/ (2007).
International Electrotechnical Commission (IEC). Functional safety and IEC 61508 : A basic guide tech. rep.May (IEC, 2004). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&=1&cad=rja&uact=8&ved=0ahUKEwi9x4Oky6TNAhUEKcAKHQZ2BQIQFggfMAA&url=http%3A%2F%2Fwebarchive.nationalarchives.gov.uk%2F20111005155017%2Fhttp%3A%2Fwww.dft.gov.uk%2Fpgr%2Frail%2Fpassenger%2Ffranchis.
Gizzi, L., et al. EuPRAXIA Milestone Report: M4.4 Final Laser and Controls Requirement Table tech. rep. (EuPRAXIA, 2018).
Palmer, D.T., et al. The next generation photoinjector tech. rep. (Stanford Linear Accelerator Center (SLAC), 2005).
Palmer, D.T., et al. Simulations of the BNL/SLAC/UCLA 1.6 cell emittance compensated photocathode rf gun low energy beam line tech. rep. (Stanford Linear Accelerator Center SLAC–PUB–95–6800, 1995).
Adriani, O., et al. Technical Design Report EuroGammaS proposal for the ELI–NP Gamma beam System (2014).
Limborg-Deprey, C. RF Design of the LCLS Gun tech. rep. (SLAC National Accelerator Laboratory (SLAC), 2010). http://www.ssrl.slac.stanford.edu/lcls/technotes/lcls-tn-05-3.pdf.
Dolgashev, V.A., Tantawi, S.G., Nantista, C.D., Higashi, Y. & Higo, T. RF breakdown in normal conducting single–cell structures in Part. Accel. Conf. 2005. PAC 2005. Proc. (2005) 595–599.
Palmer, D.T., et al. Microwave measurements of the BNL/SLAC/UCLA 1.6 cell photocathode RF gun in Part. Accel. Conf. 1995., Proc. 1995 2 (1995), 982–984.
Guan, X., et al. Study of RF–asymmetry in photo–injector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 574, 17–21 (2007).
Chae, M.S., et al. Emittance growth due to multipole transverse magnetic modes in an rf gun. Phys. Rev. Spec. Top. Beams 14, 104203 (2011).
Bacci, A. and Giribono, A.. private communications.
Los Alamos Accelerator Code Group. Download Area for Poisson Superfish http://laacg.lanl.gov/laacg/services/download_sf.phtml.
ANSYS Inc. ANSYS http://www.ansys.com.
Alesini, D., Lollo, V. & Battisti, A. A. Process for manufacturing a vacuum and radiofrequency metal gasket and structure incorporating it (patent no: WO2016147118A1, PCT/IB2016/051464), 2016.
Alesini, D., et al. New technology based on clamping for high gradient radio frequency photogun. Phys. Rev. Spec. Top. Beams 18, 92001 (2015).
Kuroda, R., et al. Quasi–monochromatic hard X–ray source via laser Compton scattering and its application. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 637, S183–S186 (2011).
Kong, S.H., Kinross-Wright, J., Nguyen, D.C. & Sheffield, R.L. Photocathodes for free electron lasers. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 358, 272–275 (1995).
Dowell, D.H. & Schmerge, J.F. Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. Spec. Top. Beams 12, 74201 (2009).
Cultrera, L., et al. Mg based photocathodes for high brightness RF photoinjectors. Appl. Surf. Sci. 253, 6531–6534 (2007).
Lorusso, A., et al. Pulsed laser deposition of yttrium photocathode suitable for use in radiofrequency guns. Appl. Phys. A 123, 779 (2017).
Zhou, F., et al. Recent photocathode R&D for the LCLS injector in FEL Conf. 2014, Proc (2014), 771–773.
Carlsten, B. New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 285, 313–319. doi:https://doi.org/10.1016/0168-9002(89)90472-5. https://www.sciencedirect.com/science/article/pii/0168900289904725 (Dec. 1989).
Billen, J.H. & Young, L.M. Poisson Superfish. Los Alamos Nat. Lab tech. rep (LA–UR–96–1834, revised, 2006).
Serafini, L. & Ferrario, M. Velocity bunching in photo–injectors in AIP Conf. Proc. 581 (AIP, Sept. 2001), 87–106. doi:https://doi.org/10.1063/1.1401564. http://aip.scitation.org/doi/abs/10.1063/1.1401564.
Ferrario, M., et al. Experimental demonstration of emittance compensation with velocity bunching. Phys. Rev. Lett. 104, 54801 (2010).
Neal, R.B. THE STANFORD 2–MILE LINEAR ACCELERATOR. Phys. Today 20, 27–41 (1966).
Flottmann, K., Piot, P., Ferrario, M. & Grigorian, B. The TESLA X-FEL injector in Proc. Part. Accel. Conf. 2001 (2001), 2236ß2238.
Wuensch, W. Ultimate Field Gradient in Metallic Structures in Proc. Int. Part. Accel. Conf. (IPAC’17), Copenhagen, Denmark, 14–19 May, 2007, (2017), 24–29.
Higo, T., et al. Advances in X–band TW accelerator structures operating in the 100 MV/m regime in IPAC 2010–1st Int. Part. Accel. Conf. (Kyoto, Japan, 2010), THPEA013/SLAC– PUB–15150.
Delahaye, J.-P. Towards CLIC feasibility tech. rep. (2010), CERN–OPEN–2010–024, CLIC– Note–822.
Shintake, T. in Synchrotron Light Sources Free. Lasers Accel. Physics, Instrum. Sci. Appl. (Springer International Publishing, 2014)1–48.
Löhl, F., et al. Status of the SwissFEL C–band Linac in 36th Int. Free Electron Laser Conf. FEL 2014 (FEL 2014) (2014), 322–326.
Alesini, D., et al. The C-Band accelerating structures for SPARC photoinjector energy upgrade. J. Instrum. 8, P05004 (2013).
Farkas, Z.D., Hoag, H.A., Loew, G.A. & Wilson, P.B. SLED: A Method of Doubling SLAC’s Energy in Proceedings, 9th Int. Conf. High–Energy Accel. (HEACC 1974) Stanford, California, May 2–7, 1974 (1974), 576.
Chao, A.W. Physics of collective beam instabilities in high–energy accelerators (Wiley, New York, USA, 1993).
Bane, K.L.F. Short range dipole wakefields in accelerating structures for the NLC tech. rep. (2003)
Faure, J., et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544. doi:https://doi.org/10.1038/nature02963. https://doi.org/10.1038/nature02963 (2004).
Vieira, J.M., et al. Magnetic Control of Particle Injection in Plasma Based Accelerators. Phys. Rev. Lett. 106, 225001. doi:https://doi.org/10.1103/PhysRevLett.106.225001. http://link.aps.org/doi/10.1103/PhysRevLett.106.225001 (2011).
Bulanov, S.V., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257–R5260. doi:https://doi.org/10.1103/PhysRevE.58.R5257. http://link.aps.org/doi/10.1103/PhysRevE.58.R5257 (1998).
Schmid, K. & Veisz, L. Supersonic gas jets for laser–plasma experiments. Rev. Sci. Instrum. 83, 53304. doi:https://doi.org/10.1063/1.4719915. http://scitation.aip.org/content/aip/journal/rsi/83/5/10.1063/1.4719915 (2012).
Rowlands-Rees, T.P., et al. Laser–driven acceleration of electrons in a partially ionized plasma channel. Phys Rev Lett 100, 105005. doi:https://doi.org/10.1103/PhysRevLett.100.105005 (2008).
McGuffey, C., et al. Ionization Induced Trapping in a LaserWakefield Accelerator. Phys. Rev. Lett. 104, 25004. doi:https://doi.org/10.1103/PhysRevLett.104.025004. http://link.aps.org/doi/10.1103/PhysRevLett.104.025004 (2010).
Pak, A., et al. Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes. Phys. Rev. Lett. 104, 25003. doi:https://doi.org/10.1103/PhysRevLett.104.025003. http://link.aps.org/doi/10.1103/PhysRevLett.104.025003 (2010).
Audet, T.L., et al. Investigation of ionization–induced electron injection in a wakefield driven by laser inside a gas cell. Phys. Plasmas 23. 4942033. doi:https://doi.org/10.1063/1.4942033.. http://scitation.aip.org/content/aip/journal/pop/23/2/10.1063/1.4942033 (2016).
Chen, M., Esarey, E.H., Schroeder, C.B., Geddes, C.G.R. & Leemans, W.P. Theory of ionization–induced trapping in laser–plasma accelerators. Phys. Plasmas 19, 33101. doi:https://doi.org/10.1063/1.3689922. http://link.aip.org/link/?PHP/19/033101/1 (2012).
Pollock, B.B., et al. Demonstration of a Narrow Energy Spread, ~ 0.5 GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator. Phys. Rev. Lett. 107, 45001. doi:https://doi.org/10.1103/PhysRevLett.107.045001. http://link.aps.org/doi/10.1103/PhysRevLett.107.045001 (2011).
Mehrling, T.J., Robson, R.E., Erbe, J.-H. & Osterhoff, J. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 367–371. doi:https://doi.org/10.1016/j.nima.2016.01.091. http://www.sciencedirect.com/science/article/pii/S0168900216001418 (2016).
Swanson, K.K., et al. Control of tunable, monoenergetic laser–plasma–accelerated electron beams using a shock–induced density downramp injector. Phys. Rev. Accel. Beams 20, 1–6. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.051301 (2017).
Lee, P., et al. Optimization of laser–plasma injector via beam loading effects using ionizationinduced injection. Phys. Rev. Accel. Beams 21, 052802. doi:https://doi.org/10.1103/PhysRevAccelBeams.21.052802. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.052802 (May 2018).
Kononenko, O., et al. 2D hydrodynamic simulations of a variable length gas target for density down–ramp injection of electrons into a laser wakefield accelerator. Nucl. Inst. Methods Phys. Res. A 829, 125–129. doi:https://doi.org/10.1016/j.nima.2016.03.104. https://doi.org/10.1016/j.nima.2016.03.104 (Sept. 2016).
Lee, P., et al. Modeling laser–driven electron acceleration using WARP with Fourier decomposition. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 358–362. doi:https://doi.org/10.1016/j.nima.2015.12.036 (2016).
Lee, P., et al. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles. Phys. Rev. Acc. Beams 19, 112802. doi:https://doi.org/10.1103/PhysRevAccelBeams.19.112802 (2016).
Semushin, S. & Malka, V. High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961. doi:https://doi.org/10.1063/1.1380393. http://scitation.aip.org/content/aip/journal/rsi/72/7/10.1063/1.1380393 (2001).
Leemans, W.P., et al. GeV electron beams from a centimetre–scale accelerator. Nat. Phys. 2, 696–699. doi:https://doi.org/10.1038/nphys418. http://www.nature.com/doifinder/10.1038/nphys418 (2006).
Audet, T., et al. EuPRAXIA Milestone Report: M3.2 Design for Interaction Chambers Proposed tech. rep. (EuPRAXIA, 2017).
Streeter, M.J.V., et al. Temporal feedback control of high–intensity laser pulses to optimize ultrafast heating of atomic clusters. Appl. Phys. Lett. 112, 244101. doi:https://doi.org/10.1063/1.5027297. http://aip.scitation.org/doi/10.1063/1.5027297 (2018).
Kallos, E., et al. High-Gradient Plasma–Wakefield Acceleration with Two Subpicosecond Electron Bunches. Phys. Rev. Lett. 100, 074802. doi:https://doi.org/10.1103/PhysRevLett.100.074802. https://link.aps.org/doi/10.1103/PhysRevLett.100.074802 (Feb. 2008).
Aschikhin, A., et al. The FLASHForward facility at DESY. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 806, 175–183. doi:https://doi.org/10.1016/J.NIMA.2015.10.005. https://www.sciencedirect.com/science/article/pii/S0168900215012103 (Jan. 2016):.
Walker, P.A., et al. Horizon 2020 EuPRAXIA design study. J. Phys. Conf. Ser. 874, 012029. doi:https://doi.org/10.1088/1742-6596/874/1/012029. http://stacks.iop.org/1742-6596/874/i=1/a=012029?key=crossref.38f8a3aa8a83e5e841762fbfd0deb590 (July 2017).
Ferrario, M., et al. SPARC_LAB present and future. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 309, 183–188. doi:https://doi.org/10.1016/J.NIMB.2013.03.049 (Aug. 2013).
Benedetti, C., Schroeder, C., Esarey, E. & Leemans, W. Emittance preservation in plasmabased accelerators with ion motion. Phys. Rev. Accel. Beams 20, 111301. doi:https://doi.org/10.1103/PhysRevAccelBeams.20.111301. https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.111301 (Nov. 2017).
Tzoufras, M., et al. Beam loading by electrons in nonlinear plasma wakes. Phys. Plasmas 16. doi:https://doi.org/10.1063/1.3118628 (May 2009).
Serafini, L. & Rosenzweig, J.B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation. Phys. Rev. E 55, 7565–7590. doi:https://doi.org/10.1103/PhysRevE.55.7565. http://link.aps.org/doi/10.1103/PhysRevE.55.7565 (1997).
Ferrario, M., et al. Direct Measurement of the Double Emittance Minimum in the Beam Dynamics of the Sparc High-Brightness Photoinjector. Phys. Rev. Lett. 99, 234801. doi:https://doi.org/10.1103/PhysRevLett.99.234801. https://link.aps.org/doi/10.1103/PhysRevLett.99.234801 (Dec. 2007).
Aune, B. & Miller, R.H. New Method for Positron Production At Slac in 1979 Linear Accel. Conf. (1979), 0–3.
Emma, P. Accelerator Physics challenges of X–ray FEL SASE Sources in Proc. EPAC 2002, Paris, Fr. (2002), 49–53.
Chiadroni, E. et al. Beam manipulation for resonant plasma wakefield acceleration. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. –. doi:https://doi.org/10.1016/j.nima.2017.01.017. http://www.sciencedirect.com/science/article/pii/S0168900217300165 (2017).
Rossi, A.R. et al. The External-Injection experiment at the SPARC_LAB facility. Nucl. Instrum. Meth. A 740, 60–66. doi:https://doi.org/10.1016/0030-4018(93)90611-8. http://www.sciencedirect.com/science/article/pii/S016890021301454X (2014).
Pompili, R. et al. Experimental characterization of active plasma lensing for electron beams. Appl. Phys. Lett. 110, 104101. doi:https://doi.org/10.1063/1.4977894. https://doi.org/10.1063/1.4977894 (2017).
Giannessi, L. et al. Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering. Phys. Rev. Lett. 106, 144801. doi:https://doi.org/10.1103/PhysRevLett.106.144801. https://link.aps.org/doi/10.1103/PhysRevLett.106.144801 (Apr. 2011).
Giannessi, L. et al. Superradiant Cascade in a Seeded Free-Electron Laser. Phys. Rev. Lett. 110, 044801. doi:https://doi.org/10.1103/PhysRevLett.110.044801. https://link.aps.org/doi/10.1103/PhysRevLett.110.044801 (Jan. 2013).
Labat, M. et al. High-Gain Harmonic–Generation Free-Electron Laser Seeded by Harmonics Generated in Gas. Phys. Rev. Lett. 107, 224801. doi:https://doi.org/10.1103/PhysRevLett.107.224801. https://link.aps.org/doi/10.1103/PhysRevLett.107.224801 (Nov. 2011).
Ronsivalle, C. et al. Large–bandwidth two–color free–electron laser driven by a comb–like electron beam. New J. Phys. 16, 033018. doi:https://doi.org/10.1088/1367-2630/16/3/033018. http://stacks.iop.org/1367-2630/16/i=3/a=033018?key=crossref.a08948663f61174c2a249ec7d2efde8b (Mar. 2014).
Giribono, A. X–ray generation at SPARC_LAB Thomson backscattering source. Nuovo Cim. C– Colloq. Commun. Phys. 38. https://www.sif.it/riviste/sif/ncc/econtents/2015/038/02/article/22 (2015).
Vaccarezza, C. et al. The SPARC_LAB Thomson source. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 237–242. https://www.sciencedirect.com/science/article/pii/S0168900216001303?via%3Dihub (2016).
Chiadroni, E. et al. Characterization of the THz radiation source at the Frascati linear accelerator. Rev. Sci. Instrum. 84, 22703. doi:https://doi.org/10.1063/1.4790429. https://doi.org/10.1063/1.4790429 (2013).
Chiadroni, E. et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 102, 094101. doi:https://doi.org/10.1063/1.4794014. http://aip.scitation.org/doi/10.1063/1.4794014 (Mar. 2013).
Alesini, D. et al. Status of the SPARC project. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 528, 586–590. doi:https://doi.org/10.1016/J.NIMA.2004.04.107. https://www.sciencedirect.com/science/article/pii/S0168900204007831 (Aug. 2004).
Young, L. TStep: An electron linac design code
Zhu, J., Assmann, R., Dorda, U. & Marchetti, B. Lattice design and start–to–end simulations for the ARES linac. Nucl. Instruments Methods Phys. Res. A 909, 467–470. doi:10.1016/j. nima.2018.02.045 (Nov. 2018).
Dorda, U. et al. Status and objectives of the dedicated accelerator R&D facility “SINBAD” at DESY. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 909, 239–242 (2018).
Zhu, J. Design Study for Generating Sub–Femtosecond to Femtosecond Electron Bunches for Advanced Accelerator Development at SINBAD PhD thesis (University of Hamburg).
Lemery, F. et al. Overview of the ARES Bunch Compressor at SINBAD in Proc. 10th Int. Part. Accel. Conf. (Melbourne, 2019) MOPTS025. doi:10.18429/JACoW– IPAC2019– MOPTS025.
Floettmann, K. et al. Astra: A space charge tracking algorithm. Manual, Version 3, 2014. http://www.desy.de/$%5Csim$mpyflo/Astra_manual/Astra–Manual_V3.2.pdf (2011).
Qiang, J., Lidia, S., Ryne, R.D. & Limborg-Deprey, C. Three–dimensional quasistatic model for high brightness beam dynamics simulation. Phys. Rev. Spec. Top.–Accel. Beams 9, 044204. doi:https://doi.org/10.1103/PhysRevSTAB.9.044204. https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204 (Apr. 2006).
Zhu, J., Assmann, R., Dorda, U., Marchetti, B. & Elektronen–synchrotron D. Matching Space-Charge Dominated Electron Bunches Into The Plasma Accelerator At SinbAD in IPAC 2017. Copenhagen (2017), 4429–4431.
Ferrario, M. et al. Laser comb with velocity bunching: Preliminary results at SPARC. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 637, S43–S46. doi:https://doi.org/10.1016/J.NIMA.2010.02.018. https://www.sciencedirect.com/science/article/pii/S0168900210002160?via%3Dihub (May 2011).
Villa, F. et al. Laser pulse shaping for high gradient accelerators. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 829, 446–451. doi:https://doi.org/10.1016/J.NIMA.2016.01.010. https://www.sciencedirect.com/science/article/pii/S0168900216000139?via%3Dihub (Sept. 2016).
Mostacci, A. et al. Advanced Beam Manipulation Techniques at SPARC in IPAC 2011 (San Sebastian, Spain, 2011), 2877–2881.
Giorgianni, F. et al. Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Long