Maximum entropy economics

Abstract

A coherent statistical methodology is necessary for analyzing and understanding complex economic systems characterized by large degrees of freedom with non-trivial patterns of interaction and aggregation across individual components. Such a methodology was arguably present in Classical Political Economy, but was abandoned in the late nineteenth century with a theoretical turn towards a purely mechanical approach to understanding social and economic phenomena. Recent advances in economic theory that draw from information theory and statistical mechanics offers a compelling statistically based approach to understanding economic systems based on a general principle of maximum entropy for doing inference. We offer a brief overview of what we consider the state of maximum entropy reasoning in economic research.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. Farjoun, M. Machover, Laws of Chaos: A Probabilistic Approach to Political Economy (Verso, 1983)

  2. 2.

    H.D. Kurz, N. Salvadori, Theory of Production: A Long-Period Analysis (Cambridge University Press, 1995)

  3. 3.

    D.K. Foley, The long-period method and marx’s theory of value, in Evolution of Economic Theory: Essays in Honour of Bertram Schefold, edited by V Caspari (Routledge, 2011)

  4. 4.

    D.K. Foley, Unholy Trinity: Labor, Capital, and Land in the New Economy (Routledge, New York, NY, 2003)

  5. 5.

    E. Scharfenaker, G. Semieniuk, Metroeconomica 68, 465 (2016)

    Article  Google Scholar 

  6. 6.

    E. Scharfenaker, D. Foley, Entropy 19, 444 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    A.C. Silva, V.M. Yakovenko, Europhys. Lett. 69, 304 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    E. Scharfernaker, M.P.A. Schneider, Labor market segmentation and the distribution of income: new evidence from internal census bureau data, Working Paper 2019–08, Univeristy of Utah, 2019

  9. 9.

    M.P.A. Schneider, E. Scharfenaker, Eur. Phys. J. Special Topics 229, 1685 (2020)

    Google Scholar 

  10. 10.

    P. Mirowski, More Heat than Light: Economics as Social Physics, Physics as Nature’s Economics (Cambridge University Press, 1991)

  11. 11.

    E. Smith, D.K. Foley, J. Econ. Dyn. Control 32, 7 (2008)

    Article  Google Scholar 

  12. 12.

    G. Debreu, The Theory of Value: An Axiomatic Analysis of Economic Equilibrium (Cowles Foundation, 1959)

  13. 13.

    P.L. dos Santos, Eur. Phys. J. Special Topics 229, 1603 (2020)

    Google Scholar 

  14. 14.

    C.A. Sims, J. Econ. Perspect. 10, 105 (1996)

    Article  Google Scholar 

  15. 15.

    D.K. Foley, J. Econ. Theory 62, 321 (1994)

    Article  Google Scholar 

  16. 16.

    L. Boltzmann, Wiener Berichte 63, 397 (1871)

    Google Scholar 

  17. 17.

    C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  18. 18.

    C.E. Shannon, Bell Syst. Tech. J. 27, 623 (1948)

    Article  Google Scholar 

  19. 19.

    J. Willard Gibbs, Elementary Principles in Statistical Mechanics (C. Scribner, New York, 1902)

  20. 20.

    J.C. Maxwell, Philos. Mag. 19, 124 (1860)

    Article  Google Scholar 

  21. 21.

    E.T. Jaynes, Foundations of probability theory and statistical mechanics, in Delaware Seminar in the Foundations of Physics, edited by M. Bunge (Springer-Verlag, 1967)

  22. 22.

    E.T. Jaynes, Phys. Rev. 106, 620 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    M. Tribus, Termostatics and Thermodynamics (D Van Nostrand Company Inc., 1961)

  24. 24.

    A. Katz, Principles of Statistical Mechanics: The Information Theory Approach (W.H. Freeman and Company, San Francisco, CA, 1967)

  25. 25.

    A. Hobson, Concepts in Statistical Mechanics (Gordon and Breach, New York, NY, 1971)

  26. 26.

    E.T. Jaynes, Where do we stand on maximum entropy? in The Maximum Entropy Formalism, edited by R.D. Levine, M. Tribus (MIT Press, 1979)

  27. 27.

    A. Golan, Foundations of Info-Metrics: Modeling, Inference and Imperfect Information (Oxford University Press, New York, NY, 2018)

  28. 28.

    D.A. Redman, The Rise of Political Economy as a Science (MIT Press, Cambridge, MA, 1997)

  29. 29.

    R. Gibrat, Les Inégalités Économiques (Librairie du Rucueil Sirey, Paris, 1931)

  30. 30.

    D.G. Champernowne, Econ. J. 63, 318 (1953)

    Article  Google Scholar 

  31. 31.

    M. Kalecki, Econometrica 13, 161 (1945)

    MathSciNet  Article  Google Scholar 

  32. 32.

    G. Palomba, Fisica Economica (UTET 1959)

  33. 33.

    H.A. Simon, Biometrika 42, 425 (1955)

    MathSciNet  Article  Google Scholar 

  34. 34.

    B. Mandelbrot, Econometrica 29, 517 (1961)

    MathSciNet  Article  Google Scholar 

  35. 35.

    R.N. Mantegna, H. Eugene Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, UK, 1999)

  36. 36.

    M. Gallegati, S. Keen, T. Lux, P. Ormerod, Physica A 370, 1 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    P. Ormerod, Eur. Phys. J. Special Topics 225, 3281 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    P. Davidson, J. Post Keynesian Econ. 18, 479 (1996)

    Article  Google Scholar 

  39. 39.

    J.L. McCauley, Dynamics of Markets: The New Financial Economics (Cambridge University Press, 2009)

  40. 40.

    P.A. Samuelson, Gibbs in economics, in Proceedings of the Gibbs symposium, edited by D.G. Caldi and G.D. Mostow (American Mathematical Soc., Providence, 1990)

  41. 41.

    P. Mirowski, Machine Dreams (Cambridge University Press, Cambridge, UK, 2002)

  42. 42.

    D.K. Foley, Eur. Phys. J. Special Topics 225, 3171 (2016)

    ADS  Article  Google Scholar 

  43. 43.

    J.L. McCauley, Physica A 371, 601 (2006)

    ADS  Article  Google Scholar 

  44. 44.

    V.M. Yakovenko, Econophysics, statistical mechanics approach to, in Encyclopedia of Complexity and System Science, edited by R.A. Meyers (Springer, 2007)

  45. 45.

    K. Marx, Capital: Volume I (Penguin, 1867 [1976])

  46. 46.

    K. Marx, Capital: Volume III (Penguin, 1894[1981])

  47. 47.

    J. Barkley Rosser Jr., Adv. Complex Syst. 11, 745 (2008)

    Article  Google Scholar 

  48. 48.

    M. Gallegati, Eur. Phys. J. Special Topics 225, 3179 (2016)

    ADS  Article  Google Scholar 

  49. 49.

    A. Caticha, A. Golan, Physica A 408, 149 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  50. 50.

    I. Csiszar, Ann. Stat. 19, 2032 (1991)

    Article  Google Scholar 

  51. 51.

    A. Golan, G. Judge, D. Miller, Maximum Entropy Econometrics: Robust Estimation with Limited Data (John Wiley and Sons Inc., 1996)

  52. 52.

    G. Judge, R. Mittelhammer, An Information Theoretic Approach to Econometrics (Cambridge University Press, 2011)

  53. 53.

    M.J. Stutzer, Toward a statistical macrodynamics: an alternative means of incorporating micro foundations, Technical Report 242, Federal Reserve Bank of Minneapolis, Research Dept., 1983

  54. 54.

    M.J. Stutzer, Entropy 2, 70 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    M.P.A. Schneider, J. Income Distrib. 22, 2 (2013)

    Google Scholar 

  56. 56.

    P.L. dos Santos, Complexity 2017, 8358909 (2017)

    Article  Google Scholar 

  57. 57.

    S. Alfarano, M. Milaković, A. Irle, J. Kauschke, J. Econ. Dyn. Control 36, 136 (2012)

    Article  Google Scholar 

  58. 58.

    E. Scharfernaker, P.L. dos Santos, Econ. Lett. 137, 191 (2015)

    Article  Google Scholar 

  59. 59.

    P.L. dos Santos, E. Scharfenaker, Informational performance, competitive capital-market scaling, and the frequency distribution of tobin’s q, Working paper 07/2016, New School for Social Research, 2016

  60. 60.

    Ö. Ömer, Entropy 20, 831 (2018)

    ADS  Article  Google Scholar 

  61. 61.

    P.L. dos Santos, J. Yang, Adv. Complex Syst., Forthcoming (2020)

  62. 62.

    M. Gell-Mann, S. Lloyd, Effective complexity, Technical Report 03-12-068, Santa Fe Institute, 2003

  63. 63.

    D.K. Foley, Notes on ensembles as a model of theory choice, unpublished manuscript

  64. 64.

    P. Adriaans, Facticity as the amount of self-descriptive information in a data set, https://arXiv:1203.2245 (2012)

  65. 65.

    C.A. Sims, J. Monetary Econ. 50, 665 (2003)

    Article  Google Scholar 

  66. 66.

    D. Wolpert, information theory: the bridge connecting bounded rational game theory and statistical physics, in Complex Engineered Systems, edited by D. Braha, A.A. Minai, Y. Bar-Yam (Springer, 2006), Chap. 12

  67. 67.

    D.K. Foley, Eur. Phys. J. Special Topics 229, 1591 (2020)

    Google Scholar 

  68. 68.

    J. Yang, Entropy 20, 156 (2018)

    ADS  Article  Google Scholar 

  69. 69.

    N. Georgescu-Roegen, The Entropy Law and the Economic Process (Harvard University Press, Cambridge, 1971)

  70. 70.

    J. Barkley Rosser Jr., Nonlinear Dyn. Psychol. Life Sci. 12, 311 (2008)

    Google Scholar 

  71. 71.

    R.E. Backhouse, B. Cherrier, Hist. Political Econ. 49, 1 (2017)

    Article  Google Scholar 

  72. 72.

    D. Rodrik, Economics Rules (Oxford University Press, 2015)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ellis Scharfenaker.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scharfenaker, E., Yang, J. Maximum entropy economics. Eur. Phys. J. Spec. Top. 229, 1577–1590 (2020). https://doi.org/10.1140/epjst/e2020-000029-4

Download citation