On the sensitivity of the evaporative pattern deposition of particulate mass to the ionic strength in kinetically stable suspensions

Abstract

The deposition of particulate mass from a volatile suspension is a common process. Usually, the employed suspensions are designed to be kinetically stable, which is achieved by employing surface forces of molecular origin, e.g., the electrical double layer (EDL) or steric forces, to render high energy barriers to particle attachments. One may expect that a high energy barrier in the original suspension will render the deposit morphology solely connected to particle convection in the volatile liquid and, once most of the carrier liquid has evaporated, to capillary attraction between detached particles to each other and to the solid substrate. However, we show that variations in the magnitude of large energy barriers to particle attachments in our original suspensions are connected to variations in the deposit morphology following the evaporation of the carrier liquid. In our experiments, the different original EDL induced energy barriers are large and traverse tens and hundreds of KBT in magnitude. Nevertheless, the evaporation of the carrier liquid during the deposition process supports the convection of mass toward the three phase contact line between the suspension, substrate, and vapor phases. The convection of particle and ion mass dynamically increases particle concentration and ionic strength in the vicinity of the contact line. The elevated ionic strength reduces the energy barriers to particle attachments in that vicinity, which appears to locally support particle coagulation and adsorption effects and hence to alter the deposit morphology. Thus, the morphology of the deposit may show considerable sensitivity to the specific magnitude of energy barrier to particle attachments in the original, kinetically stable, suspension.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Langmuir 26, 7833 (2010)

    Article  Google Scholar 

  2. 2.

    M. Anyfantakis, Z. Geng, M. Morel, S. Rudiuk, D. Baigl, Langmuir 31, 4113 (2015)

    Article  Google Scholar 

  3. 3.

    T.A.H. Nguyen, M.A. Hampton, A.V. Nguyen, J. Phys. Chem. C 117, 4707 (2013)

    Article  Google Scholar 

  4. 4.

    D.M. Kuncicky, O.D. Velev, Langmuir 24, 1371 (2007)

    Article  Google Scholar 

  5. 5.

    E. Homede, A. Zigelman, L. Abezgauz, O. Manor, J. Phys. Chem. Lett. 9, 5226 (2018)

    Article  Google Scholar 

  6. 6.

    E. Homede, O. Manor, J. Colloid Interface Sci. 562, 102 (2020)

    ADS  Article  Google Scholar 

  7. 7.

    A. Crivoi, X. Zhong, F. Duan, Phys. Rev. E 92, 032302 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    A. Crivoi, F. Duan, Phys. Rev. B 113, 5932 (2013)

    Google Scholar 

  9. 9.

    A. Zigelman, O. Manor, J. Colloid Interface Sci. 509, 195 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    A. Zigelman, O. Manor, J. Colloid Interface Sci. 525, 282 (2018)

    ADS  Article  Google Scholar 

  11. 11.

    A. Zigelman, O. Manor, Colloids Surf. A 549, 221 (2018)

    Article  Google Scholar 

  12. 12.

    J. Park, J. Moon, Langmuir 22, 3506 (2006)

    Article  Google Scholar 

  13. 13.

    L. Bai, V. Mai, Y. Lim, S. Hou, H. Möhwald, H. Duan, Adv. Mater. 30, 1705667 (2018)

    Article  Google Scholar 

  14. 14.

    S. Bucella, A. Luzio, E. Gann, L. Thomsen, C. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti, M. Caironi, Nat. Commun. 6, 8394 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    G. Whitesides, B. Grzybowski, Science 295, 2418 (2002)

    ADS  Article  Google Scholar 

  16. 16.

    M. Grzelczakand, J. Vermant, E. Furst, L. Liz-Marzan, ACS Nano 4, 3591 (2010)

    Article  Google Scholar 

  17. 17.

    J. Sun, B. Bao, M. He, H. Zhou, Y. Song, ACS Appl. Mater. Interfaces 7, 28086 (2015)

    Article  Google Scholar 

  18. 18.

    H. Wedershoven, J. Zeegers, A. Darhuber, Chem. Eng. Sci. 181, 92 (2018)

    Article  Google Scholar 

  19. 19.

    P. Zhou, H. Yu, W. Zou, Z. Wang, L. Liu, Adv. Mater. Interfaces 6, 1900912 (2019)

    Article  Google Scholar 

  20. 20.

    B.T. Liu, C.D. Li, J. Taiwan Inst. Chem. E. 95, 569 (2019)

    Article  Google Scholar 

  21. 21.

    K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Nanoscale Res. Lett. 6, 27 (2011)

    Google Scholar 

  22. 22.

    J. Hunter,Foundations of colloid science (Oxford University Press, New York, USA, 2001)

  23. 23.

    S.L. Carnie, D.Y.C. Chan, J.S. Gunning, Langmuir 10, 2993 (1994)

    Article  Google Scholar 

  24. 24.

    P.K. Das, S. Bhattacharjee, Langmuir 21, 4755 (2005)

    Article  Google Scholar 

  25. 25.

    J.C. Neu, Phys. Rev. Lett. 82, 1072 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    H. Hamaker, Physica 4, 1058 (1937)

    ADS  Article  Google Scholar 

  27. 27.

    J. Israelachvili,Intermolecular and surface forces (Academic Press, Waltham, MA, USA, 2015)

  28. 28.

    Y. Lin, Z. Su, E. Balizan, Z. Niu, Q. Wang, Langmuir 26 (2010)

  29. 29.

    S.W. Hong, J. Xu, J. Xia, Z. Lin, F. Qiu, Y. Yang, Chem. Mater. 17, 6223 (2005)

    Article  Google Scholar 

  30. 30.

    M. Byun, N.B. Bowden, Z. Lin, Nano Lett. 10, 3111 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    F. Clément, J. Leng, Langmuir 20, 6538 (2004)

    Article  Google Scholar 

  32. 32.

    J. Leng, Phys. Rev. E 82, 021405 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    Z. Lin, S. Granick, J. Am. Chem. Soc. 127, 2816 (2005)

    Article  Google Scholar 

  34. 34.

    W. Han, Z. Lin, Angew. Chem. Int. Ed. 51, 1534 (2012)

    Article  Google Scholar 

  35. 35.

    M. Elimelech, J. Gregory, X. Jia, R.A. Williams,Particle deposition and aggregation: measurement, modelling and simulation (Elsevier, Woburn, MA, USA, 1995)

  36. 36.

    A. Zigelman, O. Manor, Soft Matter 12, 5693 (2016)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ofer Manor.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zigelman, A., Homede, E. & Manor, O. On the sensitivity of the evaporative pattern deposition of particulate mass to the ionic strength in kinetically stable suspensions. Eur. Phys. J. Spec. Top. 229, 1935–1943 (2020). https://doi.org/10.1140/epjst/e2020-000005-6

Download citation