Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. The European Physical Journal Special Topics
  3. Article
Folding drives cortical thickness variations
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Numerical investigation of biomechanically coupled growth in cortical folding

05 November 2020

Shuolun Wang, Nagehan Demirci & Maria A. Holland

Robust estimation of sulcal morphology

11 June 2019

Christopher R. Madan

Cortical development coupling between surface area and sulcal depth on macaque brains

06 January 2022

Xiao Li, Songyao Zhang, … Tuo Zhang

Superficial white matter across development, young adulthood, and aging: volume, thickness, and relationship with cortical features

19 April 2023

Kurt G. Schilling, Derek Archer, … Bennett A. Landman

Developmental changes of the central sulcus morphology in young children

27 May 2021

Niharika Gajawelli, Sean C. L. Deoni, … Olivier Coulon

Charting Brain Development in Graphs, Diagrams, and Figures from Childhood, Adolescence, to Early Adulthood: Neuroimaging Implications for Neuropsychology

25 May 2021

Erin D. Bigler

The influence of biophysical parameters in a biomechanical model of cortical folding patterns

08 April 2021

Xiaoyu Wang, Julien Lefèvre, … François Rousseau

“Plis de passage” Deserve a Role in Models of the Cortical Folding Process

03 October 2019

Jean-François Mangin, Yann Le Guen, … Zhong Yi Sun

The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex

09 February 2019

Miguel Ángel García-Cabezas, Basilis Zikopoulos & Helen Barbas

Download PDF

Associated Content

Part of a collection:

Evolving Soft Matter: Shape, Dynamics and Functionality

  • Regular Article
  • Open Access
  • Published: 16 November 2020

Folding drives cortical thickness variations

  • Maria A. Holland1,
  • Silvia Budday2,
  • Gang Li3,
  • Dinggang Shen3,
  • Alain Goriely4 &
  • …
  • Ellen Kuhl5 

The European Physical Journal Special Topics volume 229, pages 2757–2778 (2020)Cite this article

  • 578 Accesses

  • 4 Citations

  • 10 Altmetric

  • Metrics details

Abstract

The cortical thickness is a characteristic biomarker for a wide variety of neurological disorders. While the structural organization of the cerebral cortex is tightly regulated and evolutionarily preserved, its thickness varies widely between 1.5 and 4.5 mm across the healthy adult human brain. It remains unclear whether these thickness variations are a cause or consequence of cortical development. Recent studies suggest that cortical thickness variations are primarily a result of genetic effects. Previous studies showed that a simple homogeneous bilayered system with a growing layer on an elastic substrate undergoes a unique symmetry breaking into a spatially heterogeneous system with discrete gyri and sulci. Here, we expand on that work to explore the evolution of cortical thickness variations over time to support our finding that cortical pattern formation and thickness variations can be explained – at least in part – by the physical forces that emerge during cortical folding. Strikingly, as growth progresses, the developing gyri universally thicken and the sulci thin, even in the complete absence of regional information. Using magnetic resonance images, we demonstrate that these naturally emerging thickness variations agree with the cortical folding pattern in n = 9 healthy adult human brains, in n = 564 healthy human brains ages 7–64, and in n = 73 infant brains scanned at birth, and at ages one and two. Additionally, we show that cortical organoids develop similar patterns throughout their growth. Our results suggest that genetic, geometric, and physical events during brain development are closely interrelated. Understanding regional and temporal variations in cortical thickness can provide insight into the evolution and causative factors of neurological disorders, inform the diagnosis of neurological conditions, and assess the efficacy of treatment options.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. W. His, Unsere Körperform und das physiologische Problem ihrer Entstehung (F.C.W. Vogel, Leipzig, 1874)

  2. W.E. Le Gros Clark, Deformation patterns in the cerebral cortex, in Essays on Growth and Form (Oxford University Press, London, 1945), pp. 1–22

  3. D.P. Richman, R.M. Stewart, J.W. Hutchinson, V.S. Caviness, Science 189, 18 (1975)

    Article  ADS  Google Scholar 

  4. R. Toro, Y. Burnod, Cerebral Cortex 15, 1900 (2005)

    Article  Google Scholar 

  5. S. Herculano-Houzel, B. Mota, P. Wong, J.H. Kaas, Proc. Natl. Acad. Sci. 107, 19008 (2010)

    Article  ADS  Google Scholar 

  6. P.V. Bayly, R. Okamoto, G. Xu, Y. Shi, L.A. Taber, Phys. Bio. 10, 016005 (2013)

    Article  Google Scholar 

  7. T. Sun, R.F. Hevner, Nat. Rev. Neurosci. 15, 217 (2014)

    Article  Google Scholar 

  8. E. Taverna, M. Götz, W.B. Huttner, Ann. Rev. Cell Develop. Bio. 30, 465 (2014)

    Article  Google Scholar 

  9. B. Mota, S. Herculano-Houzel, Science 349, 74 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. Wang, J. Necus, M. Kaiser, B. Mota, Proc. Natl. Acad. Sci. 113, 12820 (2016)

    Article  Google Scholar 

  11. T. Tallinen, J.Y. Chung, J. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. 111, 12667 (2014)

    Article  ADS  Google Scholar 

  12. A. Goriely, M.G.D. Geers, G.A. Holzapfel, J. Jayamohan, A. Jérusalem, S. Sivaloganathan, W. Squier, J.A.W. van Dommelen, S. Waters, E. Kuhl, Biomech. Model Mechanobio. 14, 931 (2015)

    Article  Google Scholar 

  13. T. Tallinen, J.Y. Chung, F. Rousseau, N. Girard, J. Lefevre, L. Mahadevan, Nat. Phys. 12, 588 (2016)

    Article  Google Scholar 

  14. E. Kuhl, Nat. Phys. 12, 533 (2016)

    Article  ADS  Google Scholar 

  15. A. Goriely, The Mathematics and Mechanics of Biological Growth (Springer-Verlag, New York, 2017)

  16. E. Karzbrun, A. Kshirsagar, S.R. Cohen, J.H. Hanna, O. Reiner, Nat. Phys. 14, 515 (2018)

    Article  Google Scholar 

  17. L. Ronan, N. Voets, C. Rua, A. Alexander-Bloch, M. Hough, C. Mackay, T.J. Crow, A. James, J.N. Giedd, P.C. Fletcher, Cerebral Cortex 24, 2219 (2014)

    Article  Google Scholar 

  18. S. Budday, C. Raybaud, E. Kuhl, Sci. Rep. 4, 5644 (2014)

    Article  ADS  Google Scholar 

  19. M.A. Holland, B. Li, X.Q. Feng, E. Kuhl, J. Mech. Phys. Solids 98, 350 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.A. Holland, S. Budday, A. Goriely, E. Kuhl, Phys. Rev. Lett. 121, 228002 (2018)

    Article  ADS  Google Scholar 

  21. H. Alawiye, E. Kuhl, A. Goriely, Philos. Trans. R. Soc. A 377, 20180076 (2019)

    Article  ADS  Google Scholar 

  22. C. de Juan Romero, C. Bruder, U. Tomasello, J.M. Sanz-Anguela, V. Borrell, EMBO J. 34, 1859 (2015)

    Article  Google Scholar 

  23. N.D. Amin, S.P. Pasca, Neuron 100, 389 (2018)

    Article  Google Scholar 

  24. V. Fernandez, C. Llinares-Benadero, V. Borrell, EMBO J. 35, 1021 (2016)

    Article  Google Scholar 

  25. X. Wang, C. Studholme, P.L. Grigsby, A.E. Frias, V.C. Cuzon Carlson, C.D. Kroenke, J. Neurosci. 37, 1971 (2017)

    Article  Google Scholar 

  26. B.I. Shraiman, Proc. Natl. Acad. Sci. USA 102, 3318 (2005)

    Article  ADS  Google Scholar 

  27. E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000)

    Article  ADS  Google Scholar 

  28. L.M. Carreira, A. Ferreira, F. Liste Burilo, Anatom. Rec. 294, 1920 (2011)

    Article  Google Scholar 

  29. S. Budday, P. Steinmann, A. Goriely, E. Kuhl, Extr. Mech. Lett. 4, 193 (2015)

    Article  Google Scholar 

  30. A.Y. Hardan, R.J. Jou, M.S. Keshavan, R. Varma, N.J. Minshew, Psychiatry Res. Neuroimaging 131, 263 (2004)

    Article  Google Scholar 

  31. R.J. Jou, A.Y. Hardan, M.S. Keshavan, Schizophrenia Res. 75, 309 (2005)

    Article  Google Scholar 

  32. A. Harvey, S. Mandelstam, W. Maixner, R. Leventer, M. Semmelroch, D. MacGregor, R. Kalnins, Y. Perchyonok, G. Fitt, S. Barton, M. Kean, G. Fabinyi, G. Jackson, Neurology 84, 2021 (2015)

    Article  Google Scholar 

  33. B. Fischl, A.M. Dale, Proc. Natl. Acad. Sci. 97, 11044 (2000)

    Article  ADS  Google Scholar 

  34. W. Welker, Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci, in Cerebral Cortex, edited by E.G. Jones, A. Peters (Springer Science+Business Media, New York, 1990), Vol. 8B

  35. Y. He, Z.J. Chen, A.C. Evans, Cerebral Cortex 17, 2407 (2007)

    Article  Google Scholar 

  36. K. Brodmann, Vergleichende Lokalisationslehre der Großhirnrinde (Johann Ambrosius Barth Verlag, Leipzig, 1909)

  37. M.A. Biot, Proc. R. Soc. London A 242, 444 (1957)

    Article  ADS  Google Scholar 

  38. A. Goriely, M. Ben Amar, Phys. Rev. Lett. 94, 198103 (2005)

    Article  ADS  Google Scholar 

  39. K. Garikipati, Appl. Mech. Rev. 62, 030801 (2009)

    Article  ADS  Google Scholar 

  40. M. Ben Amar, A. Bordner, J. Elasticity 1, 213 (2017)

    Article  Google Scholar 

  41. A. Auguste, L. Jin, Z. Suo, R.C. Hayward, Extr. Mech. Lett. 11, 30 (2017)

    Article  Google Scholar 

  42. J.W. Hutchinson, Philos. Trans. R. Soc. A 371, 20120422 (2014)

    Article  ADS  Google Scholar 

  43. D. Ambrosi, M. BenAmar, C.J. Cyron, A. DeSimone, A. Goriely, J.D. Humphrey, E. Kuhl, J.R. Soc, Interface 16, 20190233 (2019)

    Google Scholar 

  44. S. Budday, P. Steinmann, E. Kuhl, J. Mech. Phys. Solids 72, 75 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Hayback, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, G.A. Holzapfel, Acta Biomater. 48, 319 (2017)

    Article  Google Scholar 

  46. S. Budday, S. Andres, B. Walter, P. Steinmann, E. Kuhl, Philos. Trans. R. Soc. A 375, 2016.0163 (2017)

  47. G. Li, J. Nie, L. Wang, F. Shi, W. Lin, J.H. Gilmore, D. Shen, Cerebral Cortex 23, 2724 (2013)

    Article  Google Scholar 

  48. L. Wang, F. Shi, P.T. Yap, W. Lin, J.H. Gilmore, D. Shen, Hum. Brain Mapp. 34, 956 (2013)

    Article  Google Scholar 

  49. G. Li, W. Lin, J.H. Gilmore, D. Shen, J. Neurosci. 35, 9150 (2015)

    Article  Google Scholar 

  50. G. Li, J. Nie, L. Wang, F. Shi, J.H. Gilmore, W. Lin, D. Shen, Neuroimage 90, 226 (2014)

    Article  Google Scholar 

  51. R.S. Desikan, F. Ségonne, B. Fischl, B.T. Quinn, B.C. Dickerson, D. Blacker, R.L. Buckner, A.M. Dale, R.P. Maguire, B.T. Hyman, M.S. Albert, R.J. Killiany, Neuroimage 31, 968 (2006)

    Article  Google Scholar 

  52. M. Saggar, E.M. Quintin, E. Kineitz, N.T. Bott, Z. Sun, W.C. Hong, Y.H. Chien, N. Liu, R.F. Dougherty, A. Rohalty, G. Hawthrone, A.L. Reiss, Sci. Rep. 5, 10894 (2015)

    Article  ADS  Google Scholar 

  53. A.M. Dale, B. Fischl, M.I. Sereno, Neuroimage 9, 179 (1999)

    Article  Google Scholar 

  54. C. Destrieux, B. Fischl, A. Dale, E. Halgren, Neuroimage 15, 1 (2010)

    Article  Google Scholar 

  55. R. Toro, M. Perron, B. Pike, L. Richter, S. Veillette, Z. Pausova, T. Paus, Cerebral Cortex 18, 2352 (2008)

    Article  Google Scholar 

  56. C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B.S. Khundrakpam, J.D. Lewis, Q. Li, M. Milham, C. Yan, P. Bellec, The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives, in Neuroinformatics (Stockholm, Sweden, 2013)

  57. H.G. Allen, Analysis and Design of Structural Sandwich Panels (PergamonPress, Oxford, 1969)

  58. S. Budday, E. Kuhl, J.W. Hutchinson, Philos. Mag. 95, 3208 (2015)

    Article  ADS  Google Scholar 

  59. K. Brodmann, Zentralbl. Nervenheilkunde Psychiatrie 31, 781 (1908)

    Google Scholar 

  60. T. Tallinen, J.S. Biggins, L. Mahadevan, Phys. Rev. Lett. 110, 024302 (2013)

    Article  ADS  Google Scholar 

  61. L. Jin, A. Auguste, R.C. Hayward, Z. Suo, J. Appl. Mech. 82, 061008 (2015)

    Article  ADS  Google Scholar 

  62. P.V. Bayly, L.A. Taber, C.D. Kroenke, J. Mech. Behav. Bio. Mat. 29, 568 (2014)

    Article  Google Scholar 

  63. T. Tallinen, J.S. Biggins, Phys. Rev. E 92, 022720 (2015)

    Article  ADS  Google Scholar 

  64. S. Budday, T.C. Ovaert, G.A. Holzapfel, P. Steinmann, E. Kuhl, Arch. Comput. Meth. Eng. 27, 1187 (2020)

    Article  Google Scholar 

  65. M.A. Green, L.E. Bilston, R. Sinkurs, NMR Biomed. 21, 755 (2008)

    Article  Google Scholar 

  66. A.F. Christ, K. Franze, H. Gautier, P. Moshayedi, J. Fawcett, R.J.M. Franklin, R.T. Karadottir, J. Guck, J. Biomech. 43, 2986 (2010)

    Article  Google Scholar 

  67. M.T. Prange, S.S. Margulies, J. Biomech. Eng. 124, 244 (2002)

    Article  Google Scholar 

  68. S. Budday, R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T.C. Ovaert, E. Kuhl, J. Mech. Behav. Biomed. Mat. 46, 318 (2015)

    Article  Google Scholar 

  69. T. Kaster, I. Sack, A. Samani, J. Biomech. 44, 1158 (2011)

    Article  Google Scholar 

  70. J. Weickenmeier, R. de Rooij, S. Budday, T.C. Ovaert, E. Kuhl, J. Mech. Behav. Bio. Mat. 76, 119 (2017)

    Article  Google Scholar 

  71. J. Weickenmeier, M. Kurt, E. Ozkaya, R. de Rooij, T.C. Ovaert, R.L. Ehman, K. Butts Pauly, E. Kuhl, J. Mech. Beh. Biomed. Mat. 84, 88 (2018)

    Article  Google Scholar 

  72. M.A. Biot, Mechanics of Incremental Deformations (Wiley, New York, 1965)

  73. E. Lejeune, A. Javili, J. Weickenmeier, E. Kuhl, C. Linder, Soft Matter 12, 5613 (2016)

    Article  ADS  Google Scholar 

  74. A. Fjell, H. Grydeland, S.K. Krogsrud, I. Amlien, D.A. Rohani, L. Ferschmann, A.B. Storsve, C.K. Tamnes, R. Sala-Llonch, P. Due-Tonnessen, A. Bjornerud, A.E. Solsens, A. Haberg, J. Skranes, H. Bartsch, C.H. Chen, W.K. Thompson, M.S. Panizzon, W.S. Kremen, A.M. Dale, K.B. Walhovd, Proc. Natl. Acad. Sci. 112, 15462 (2015)

    Article  ADS  Google Scholar 

  75. L. Hufnagel, A.A. Teleman, H. Rouault, S.M. Cohen, B.I. Shraiman, Proc. Natl. Acad. Sci. USA 104, 3835 (2007)

    Article  ADS  Google Scholar 

  76. D.A. Kessler, J. Koplik, H. Levine, Adv. Phys. 37, 255 (1988)

    Article  ADS  Google Scholar 

  77. G. Lorenzo, M.A. Scott, K. Tew, T.J.R. Hughes, Y.J. Zhang, L. Liu, G. Vilanova, H. Gomez, Proc. Natl. Acad. Sci. USA 113, E7663 (2013)

    Article  Google Scholar 

  78. D.H. Salat, R.L. Buckner, A.Z. Snyder, D.N. Greve, R.S. Desikan, E. Busa, J.C. Morris, A.D. Dale, B. Fischl, Cerebral Cortex V14N7, 721 (2004)

    Article  Google Scholar 

  79. I. Bluemcke, H. Vinters, D. Armstrong, E. Aronica, M. Thom, R. Spreafico, Epileptic Disorders 11, 181 (2009)

    Article  Google Scholar 

  80. C. von Economo, G.N. Koskinas, Die Zytoarchitektonik der Hirnrinde des erwachsenen Menschen (Springer-Verlang, Wien, 1925)

  81. S.T. Bok, Neurol. Psychiat. 121, 682 (1929)

    Article  Google Scholar 

  82. M.J. Razavi, T. Zhang, T. Liu, X. Wang, Sci. Rep. 5, 14477 (2015)

    Article  ADS  Google Scholar 

  83. M.J. Razavi, T. Zhang, X. Li, T. Liu, X. Wang, Phys. Rev. E. 92, 032701 (2015)

    Article  ADS  Google Scholar 

  84. G. Tau, B. Peterson, Neuropsychopharmacology 35, 147 (2010)

    Article  Google Scholar 

  85. R. Toro, Evol. Biol. 39, 600 (2012)

    Article  Google Scholar 

  86. J. Hill, T. Inder, D. Dieker, J. Harwell, D. Van Essen, Proc. Natl. Acad. Sci. USA 107, 13135 (2010)

    Article  ADS  Google Scholar 

  87. F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Nat. Phys. 7, 56 (2011)

    Article  Google Scholar 

  88. M.W. Moon, S. Lee, J.Y. Sun, K.H. Oh, A. Vaziri, J.W. Hutchinson, Proc. Natl. Acad. Sci. USA 104, 113 (2007)

    Article  Google Scholar 

  89. P. Kim, M. Abkarian, H.A. Stone, Nat. Mater. 10, 952 (2011)

    Article  ADS  Google Scholar 

  90. B.J. Kim, P. Kim, N.C. Pegard, S.J. Oh, C.R. Kagan, J.W. Fleischer, H.A. Stone, Y.L. Loo, Nat. Mater. 10, 952 (2012)

    Article  Google Scholar 

  91. J. Wang, B. Li, Y.P. Cao, X.Q. Feng, H. Gao, Appl. Phys. Lett. 108, 021903 (2016)

    Article  ADS  Google Scholar 

  92. B. Li, Y.P. Cao, X.Q. Feng, H. Gao, Soft Matter 8, 5728 (2012)

    Article  ADS  Google Scholar 

  93. E. Lejeune, B. Dortdivanlioglu, E. Kuhl, C. Linder, Soft Matter 15, 2204 (2019)

    Article  ADS  Google Scholar 

  94. M.A. Holland, T. Kosmata, A. Goriely, E. Kuhl, Math. Mech. Solids 18, 561 (2013)

    Article  MathSciNet  Google Scholar 

  95. R. Chirat, D.E. Moulton, A. Goriely, Proc. Natl. Acad. Sci. USA 110, 6015 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  96. M. Trejo, C. Douarch, V. Bailleux, C. Poulard, S. Mariot, C. Regeard, E. Raspaud, Proc. Natl. Acad. Sci. USA 110, 2011 (2013)

    Article  ADS  Google Scholar 

  97. M. Ben Amar, F. Jia, Proc. Natl. Acad. Sci. USA 110, 10525 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA

    Maria A. Holland

  2. Department of Mechanical Engineering, Friedrich-Alexander University, 91058, Erlangen, Germany

    Silvia Budday

  3. Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA

    Gang Li & Dinggang Shen

  4. Mathematical Institute, University of Oxford, Oxford, UK

    Alain Goriely

  5. Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA

    Ellen Kuhl

Authors
  1. Maria A. Holland
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Silvia Budday
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gang Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Dinggang Shen
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Alain Goriely
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Ellen Kuhl
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alain Goriely.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, M.A., Budday, S., Li, G. et al. Folding drives cortical thickness variations. Eur. Phys. J. Spec. Top. 229, 2757–2778 (2020). https://doi.org/10.1140/epjst/e2020-000001-6

Download citation

  • Received: 06 January 2020

  • Accepted: 27 July 2020

  • Published: 16 November 2020

  • Issue Date: November 2020

  • DOI: https://doi.org/10.1140/epjst/e2020-000001-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Evolving Soft Matter: Shape, Dynamics and Functionality

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature