Thin-film model of droplet durotaxis

“E pur si muove”

Abstract

The control of liquid droplets on solid surfaces is important in many scientific and technological applications, including microfabrication, microfluidics and heat transfer. It has been known for decades that droplets sitting on a solid surface can be moved using thermal, chemical or electrical gradients. Recent experiments have shown that gradients of substrate deformability also produce spontaneous droplet motion. This motion mechanism, which is called durotaxis, remains poorly understood. This paper proposes a model for droplet durotaxis based on a thin-film description of the fluid dynamics equation. The substrate is modeled as a Kirchhoff plate with non-constant flexural rigidity. We use high-fidelity simulations to show that the model naturally predicts droplet durotaxis without any ad hoc assumption. The model predictions for the dependence of droplet velocity on droplet size are consistent with experiments. The simplicity of the model suggests that durotaxis may be a pervasive and fundamental process at small scales and opens new possibilities to study the interaction of droplets with compliant solid surfaces.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Bico, É. Reyssat, B. Roman, Annu. Rev. Fluid Mech. 50, 629 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    F. Brochard, Langmuir 5, 432 (1989)

    Article  Google Scholar 

  3. 3.

    J. Bueno, Y. Bazilevs, R. Juanes, H. Gomez, Extreme Mech. Lett. 13, 10 (2017)

    Article  Google Scholar 

  4. 4.

    J. Bueno, Y. Bazilevs, R. Juanes, H. Gomez, Soft Matter 14, 1417 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    J. Bueno, H. Casquero, Y. Bazilevs, H. Gomez, Meccanica 53, 1221 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    M.K. Chaudhury, G.M. Whitesides, Science 256, 1539 (1992)

    ADS  Article  Google Scholar 

  7. 7.

    J. Chung, G.M. Hulbert, J. Appl. Mech. 60, 371 (1993)

    ADS  Article  Google Scholar 

  8. 8.

    N.J. Cira, A. Benusiglio, M. Prakash, Nature 519, 446 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric analysis: Toward integration of CAD and FEA, (Wiley, 2009)

  10. 10.

    M. De Volder, A.J. Hart, Angew. Chem. Int. Ed. 52, 2412 (2013)

    Article  Google Scholar 

  11. 11.

    P. Drzaic, Nat. Photonics 3, 248. (2009)

    ADS  Article  Google Scholar 

  12. 12.

    H. Gomez, V.M. Calo, Y. Bazilevs, T.J.R. Hughes, Comput. Methods Appl. Mech. Eng. 197, 4333 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    H. Gomez, J. Bueno, Interaction of multiphase fluids and solid structures, in Frontiers in Computational Fluid-Structure Interaction and Flow Simulation (Springer, 2018), pp. 131–165.

  14. 14.

    H. Gomez, T.J.R. Hughes, X. Nogueira, V.M. Calo, Comput. Methods Appl. Mech. Eng. 199, 1828 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    H. Gomez, K.G. van der Zee, Computational phase-field modeling, in Encyclopedia of Computational Mechanics, 2nd edn. (2018), pp. 1–35.

  16. 16.

    T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Comput. Methods Appl. Mech. Eng. 194, 4135 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    J.N. Israelachvili, Intermolecular and surface forces, (Academic press, 2011)

  18. 18.

    K.E. Jansen, C.H. Whiting, G.M. Hulbert, Comput. Methods Appl. Mech. Eng. 190, 305 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    T. Liu, N. Nadermann, Z. He, S.H. Strogatz, C.-Y. Hui, A. Jagota, Langmuir 33, 4942 (2017)

    Article  Google Scholar 

  20. 20.

    R. Masurel, M. Roché, L. Limat, I. Ionescu, J. Dervaux, Phys. Rev. Lett. 122, 248004 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    ADS  Article  Google Scholar 

  22. 22.

    M. Prakash, N. Gershenfeld, Science 315, 832 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    O. Raccurt, F. Tardif, F.A. d’Avitaya, T. Vareine, J. Micromech. Microeng. 14, 1083 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    E. Raphaël, C. R. Acad. Sci. Ser. IIB 306, 751 (1988)

    Google Scholar 

  25. 25.

    Y. Saad, M.H. Schultz, SIAM J. Sci. Stat. Comput. 7, 856 (1986)

    Article  Google Scholar 

  26. 26.

    A. Sharma, Langmuir 9, 3580 (1993)

    Article  Google Scholar 

  27. 27.

    A. Sharma, Langmuir 9, 861 (1993)

    Article  Google Scholar 

  28. 28.

    M. Sokuler, G.K. Auernhammer, M. Roth, C. Liu, E. Bonacurrso, H.-J. Butt, Langmuir 26, 1544 (2009)

    Article  Google Scholar 

  29. 29.

    R.W. Style, R. Boltyanskiy, Y. Che, J.S. Wettlaufer, L.A. Wilen, E.R. Dufresne, Phys. Rev. Lett. 110, 066103 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    R.W. Style, A. Jagota, C.-Y. Hui, E.R. Dufresne, Annu. Rev. Condens. Matter Phys. 8, 99 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    R.W. Style, Y. Che, S.J. Park, B.M. Weon, J.H. Je, C. Hyland, G.K. German, M.P. Power, L.A. Wilen, J.S. Wettlaufer, E.R. Dufresne, Proc. Natl. Acad. Sci. 110, 12541 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    T. Tanaka, M. Morigami, N. Atoda, Jpn. J. Appl. Phys. 32, 6059 (1993)

    ADS  Article  Google Scholar 

  33. 33.

    S.H. Tawfick, J. Bico, S. Barcelo, MRS Bull. 41, 108 (2016)

    Article  Google Scholar 

  34. 34.

    U. Thiele, M. Mertig, W. Pompe, Phys. Rev. Lett. 80, 2869 (1998)

    ADS  Article  Google Scholar 

  35. 35.

    C.J. Van Oss, Surface free energy contribution to cell interactions, in Biophysics of the Cell Surface (Springer, 1990), pp. 131–152

  36. 36.

    T.-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Nature 477, 443 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    B. Zhao, C.W. MacMinn, R. Juanes, Proc. Natl. Acad. Sci. 113, 10251 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    Z. Zheng, I.M. Griffiths, H.A. Stone, J. Fluid Mech. 784, 443 (2015)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hector Gomez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez, H., Velay-Lizancos, M. Thin-film model of droplet durotaxis. Eur. Phys. J. Spec. Top. 229, 265–273 (2020). https://doi.org/10.1140/epjst/e2019-900127-x

Download citation