Skip to main content
Log in

Evidence of Majorana fermions in the noise characteristic of normal metal–topological superconductor junctions

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A finite topological superconductor nanowire bears a Majorana fermion at its ends, leading to unique transport properties when connected to normal metal leads. We consider in this review two theoretical proposals based on noise measurements in normal metal–topological superconductor junctions. The first one considers a Hanbury Brown and Twiss setup where a topological superconductor is connected to two normal metal leads. The second proposal deals with the finite frequency noise of a single normal metal–topological superconductor junction. Both are computed using a unified framework of non equilibrium Keldysh Green’s functions using a Hamiltonian approach. Calculations are performed non-perturbatively in the tunnel hopping parameter and address both subgap and above gap regimes. Concerning the Hanbury Brown and Twiss setup, we find in the subgap case that when the two normal metal leads are biased with equal voltage, the noise crossed correlations are negative, as in the case of a three terminal normal metal junction. On the other hand when subgap voltages are opposite, the noise crossed correlations are positive. Predictions when the two Majoranas at the end of the topological superconductors hybridize, and when the chemical potential of the topological superconductor drives the system out of the topological phase are discussed. In the second proposal, the finite frequency emission and absorption noises are computed for a single junction. We observe noticeable structures in these quantities, related to simple transport processes involving the Majorana bound state. Both results offer an original tool for the further characterization of the presence of Majorana bound states in condensed matter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Majorana, Nuovo Cim. 14, 171 (1937)

    Article  ADS  Google Scholar 

  2. A.Y. Kitaev, Physics-Uspekhi 44, 131 (2001)

    Article  ADS  Google Scholar 

  3. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  4. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  5. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M.P.A. Fisher, Nat. Phys. 7, 412 (2011)

    Article  Google Scholar 

  6. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  7. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  8. R.M. Lutchyn, E.P.A.M. Bakkers, L.P. Kouwenhoven, P. Krogstrup, C.M. Marcus, Y. Oreg, Nat. Rev. Mater. 3, 52 (2018)

    Article  ADS  Google Scholar 

  9. S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Science 346, 602 (2014)

    Article  ADS  Google Scholar 

  10. H. Kim, A. Palacio-Morales, T. Posske, L. Rózsa, K. Palotás, L. Szunyogh, M. Thorwart, R. Wiesendanger, Sci. Adv. 4, eaar5251 (2018)

    Article  ADS  Google Scholar 

  11. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  12. M. Leijnse, K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012)

    Article  ADS  Google Scholar 

  13. C. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  14. T.D. Stanescu, S. Tewari, J. Phys. Condens. Matter 25, 233201 (2013)

    Article  ADS  Google Scholar 

  15. R. Aguado, Riv. Nuovo Cim. 40, 523 (2017)

    Google Scholar 

  16. S.R. Elliott, M. Franz, Rev. Mod. Phys. 87, 137 (2015)

    Article  ADS  Google Scholar 

  17. S. Kashiwaya, Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000)

    Article  ADS  Google Scholar 

  18. P. Burset, B. Lu, S. Tamura, Y. Tanaka, Phys. Rev. B 95, 224502 (2017)

    Article  ADS  Google Scholar 

  19. H. Zhang et al., Nature 556, 74 (2018)

    Article  ADS  Google Scholar 

  20. R.H. Brown, R.Q. Twiss, A.C.B. Lovell, Proc. R. Soc. Lond. A. Math. Phys. Sci. 242, 300 (1957)

    ADS  Google Scholar 

  21. R.H. Brown, R.Q. Twiss, A.C.B. Lovell, Proc. R. Soc. Lond. A Math. Phys. Sci. 243, 291 (1958)

    ADS  Google Scholar 

  22. T. Martin, R. Landauer, Phys. Rev. B 45, 1742 (1992)

    Article  ADS  Google Scholar 

  23. M. Büttiker, Phys. Rev. B 46, 12485 (1992)

    Article  ADS  Google Scholar 

  24. M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, C. Schönenberger, Science 284, 296 (1999)

    Article  ADS  Google Scholar 

  25. W.D. Oliver, J. Kim, R.C. Liu, Y. Yamamoto, Science 284, 299 (1999)

    Article  ADS  Google Scholar 

  26. M.P. Anantram, S. Datta, Phys. Rev. B 53, 16390 (1996)

    Article  ADS  Google Scholar 

  27. T. Martin, Phys. Lett. A 220, 137 (1996)

    Article  ADS  Google Scholar 

  28. J. Torrès, T. Martin, G.B. Lesovik, Phys. Rev. B 63, 134517 (2001)

    Article  ADS  Google Scholar 

  29. G. Lesovik, T. Martin, G. Blatter, Eur. Phys. J. B 24, 287 (2001)

    Article  ADS  Google Scholar 

  30. J. Torrès, T. Martin, Eur. Phys. J. B 12, 319 (1999)

    Article  ADS  Google Scholar 

  31. G. Deutscher, D. Feinberg, Appl. Phys. Lett. 76, 487 (2000)

    Article  ADS  Google Scholar 

  32. P. Recher, E.V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)

    Article  ADS  Google Scholar 

  33. J. Rech, D. Chevallier, T. Jonckheere, T. Martin, Phys. Rev. B 85, 035419 (2012)

    Article  ADS  Google Scholar 

  34. M. Acciai, F. Ronetti, D. Ferraro, J. Rech, T. Jonckheere, M. Sassetti, T. Martin, https://arXiv:1906.03004 (2019)

  35. D. Ferraro, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015)

    Article  ADS  Google Scholar 

  36. A. Haim, E. Berg, F. von Oppen, Y. Oreg, Phys. Rev. Lett. 114, 166406 (2015)

    Article  ADS  Google Scholar 

  37. A. Haim, E. Berg, F. von Oppen, Y. Oreg, Phys. Rev. B 92, 245112 (2015)

    Article  ADS  Google Scholar 

  38. S. Valentini, M. Governale, R. Fazio, F. Taddei, Physica E 75, 15 (2016)

    Article  ADS  Google Scholar 

  39. E. Bocquillon et al., Ann. Phys. 526, 1 (2014)

    Article  Google Scholar 

  40. J.F. Clauser, Phys. Rev. D 9, 853 (1974)

    Article  ADS  Google Scholar 

  41. G.B. Lesovik, R. Loosen, J. Exp Theor. Phys. Lett. 65, 295 (1997)

    Article  Google Scholar 

  42. U. Gavish, Y. Levinson, Y. Imry, Phys. Rev. B 62, R10637 (2000)

    Article  ADS  Google Scholar 

  43. R. Aguado, L.P. Kouwenhoven, Phys. Rev. Lett. 84, 1986 (2000)

    Article  ADS  Google Scholar 

  44. D. Ferraro, M. Carrega, A. Braggio, M. Sassetti, New J. Phys. 16, 043018 (2014)

    Article  ADS  Google Scholar 

  45. R. Deblock, E. Onac, L. Gurevich, L.P. Kouwenhoven, Science 301, 203 (2003)

    Article  ADS  Google Scholar 

  46. P.M. Billangeon, F. Pierre, H. Bouchiat, R. Deblock, Phys. Rev. Lett. 96, 136804 (2006)

    Article  ADS  Google Scholar 

  47. P.M. Billangeon, F. Pierre, H. Bouchiat, R. Deblock, Phys. Rev. Lett. 98, 216802 (2007)

    Article  ADS  Google Scholar 

  48. J. Basset, H. Bouchiat, R. Deblock, Phys. Rev. Lett. 105, 166801 (2010)

    Article  ADS  Google Scholar 

  49. E. Zakka-Bajjani, J. Ségala, F. Portier, P. Roche, D.C. Glattli, A. Cavanna, Y. Jin, Phys. Rev. Lett. 99, 236803 (2007)

    Article  ADS  Google Scholar 

  50. G.B. Lesovik, T. Martin, J. Torrès, Phys. Rev. B 60, 11935 (1999)

    Article  ADS  Google Scholar 

  51. A. Zazunov, R. Egger, A. Levy Yeyati, Phys. Rev. B 94, 014502 (2016)

    Article  ADS  Google Scholar 

  52. T. Jonckheere, J. Rech, A. Zazunov, R. Egger, T. Martin, Phys. Rev. B 95, 054514 (2017)

    Article  ADS  Google Scholar 

  53. Y. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  54. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990)

    Article  ADS  Google Scholar 

  55. D. Bathellier, L. Raymond, T. Jonckheere, J. Rech, A. Zazunov, T. Martin, Phys. Rev. B 99, 104502 (2019)

    Article  ADS  Google Scholar 

  56. A. Zazunov, M. Creux, E. Paladino, A. Crépieux, T. Martin, Phys. Rev. Lett. 99, 066601 (2007)

    Article  ADS  Google Scholar 

  57. D. Chevallier, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 83, 125421 (2011)

    Article  ADS  Google Scholar 

  58. T. Martin, in Nanophysics: Coherence and Transport, edited by H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, J. Dalibard (Elsevier, Amsterdam, 2005), Vol. 81 ofLes Houches, pp. 283 – 359

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Jonckheere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonckheere, T., Rech, J., Raymond, L. et al. Evidence of Majorana fermions in the noise characteristic of normal metal–topological superconductor junctions. Eur. Phys. J. Spec. Top. 229, 577–592 (2020). https://doi.org/10.1140/epjst/e2019-900119-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900119-5

Navigation