Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. The European Physical Journal Special Topics
  3. Article
Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Flat Bands and Salient Experimental Features Supportingthe Fermion Condensation Theory of Strongly Correlated Fermi Systems

01 March 2020

V. R. Shaginyan, M. Ya. Amusia, … E. V. Kirichenko

How sharply does the Anderson model depict a single-electron transistor?

02 July 2018

Krissia Zawadzki & Luiz N. Oliveira

Fermion Condensation, T-Linear Resistivity, and Planckian Limit

08 August 2019

V. R. Shaginyan, M. Ya. Amusia, … S. A. Artamonov

Aspects of quantum information in finite density field theory

08 March 2021

Lucas Daguerre, Raimel Medina, … Gonzalo Torroba

Asymmetric Tunneling Conductance and the Non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems

29 August 2018

V. R. Shaginyan, A. Z. Msezane, … Y. S. Leevik

Topological States in Strongly Correlated Systems

02 May 2022

V. Yu. Irkhin & Yu. N. Skryabin

Quantum transports in two-dimensions with long range hopping

08 April 2023

Si-Si Wang, Kangkang Li, … Yan-Yang Zhang

Modern Physics of the Condensed State: Strong Correlations and Quantum Topology

01 June 2019

V. Yu. Irkhin & Yu. N. Skryabin

Hohenberg–Kohn Theorems for Interactions, Spin and Temperature

10 September 2019

Louis Garrigue

Download PDF

Associated Content

Part of a collection:

New Directions in the Physics of One-dimensional Electron Systems

  • Review
  • Open Access
  • Published: 14 February 2020

Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits

  • Anne Anthore1,2,
  • Dante M. Kennes3,
  • Edouard Boulat4,
  • Sabine Andergassen5,
  • Frédéric Pierre1 &
  • …
  • Volker Meden3 

The European Physical Journal Special Topics volume 229, pages 663–682 (2020)Cite this article

  • 361 Accesses

  • 7 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We review the intriguing many-body physics resulting out of the interplay of a single, local impurity and the two-particle interaction in a one-dimensional Fermi system. Even if the underlying homogeneous correlated system is taken to be metallic, this interplay leads to an emergent quantum phase transition between metallic and insulating states. We show that the zero temperature critical point and the universal low-energy physics associated to it, is realized in two different models, the field theoretical local sine-Gordon model and spinless fermions on a lattice with nearest-neighbor hopping and two-particle interaction, as well as in an experimental setup consisting of a highly tunable quantum circuit. Despite the different high-energy physics of the three systems the universal low-energy scaling curves of the conductance as a function of temperature agree up to a very high precision without any free parameter. Overall this provides a convincing example of how emergent universality in complex systems originating from a common underlying quantum critical point establishes a bridge between different fields of physics. In our case between field theory, quantum many-body theory of correlated Fermi systems, and experimental circuit quantum electrodynamics.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.L. Fetter, J.D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

  2. A. Luther, I Peschel, Phys. Rev. B 9, 2911 (1974)

    Article  ADS  Google Scholar 

  3. D.C. Mattis, J. Math. Phys. 15, 609 (1974)

    Article  ADS  Google Scholar 

  4. J. Sólyom, Adv. Phys. 28, 201 (1979)

    Article  ADS  Google Scholar 

  5. T. Giamarchi,Quantum Physics in One Dimension (Oxford University Press, New York, 2003)

  6. J. von Delft, H. Schoeller, Ann. Phys. 7, 225 (1998)

    Article  MathSciNet  Google Scholar 

  7. K. Schönhammer inInteracting Electrons in Low Dimensions, edited by D. Baeriswyl (Kluwer Academic Publishers, Dordrecht, 2005)

  8. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Grioni, S. Pons, E. Frantzeskakis, J. Phys.: Condens. Matter 21, 023201 (2009)

    ADS  Google Scholar 

  10. V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464, 209 (2010)

    Article  ADS  Google Scholar 

  11. T. Giamarchi, Int. J. Mod. Phys. B 26, 1244004 (2012)

    Article  ADS  Google Scholar 

  12. I. Safi, H. Saleur, Phys. Rev. Lett. 93, 126602 (2004)

    Article  ADS  Google Scholar 

  13. W. Apel, T.M. Rice, Phys. Rev. B 26, 7063 (1982)

    Article  ADS  Google Scholar 

  14. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992)

    Article  ADS  Google Scholar 

  15. S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982)

    Article  ADS  Google Scholar 

  16. A. Schmid, Phys. Rev. Lett. 51, (1983) 1506

    Article  ADS  Google Scholar 

  17. K. Moon, H. Yi, C.L. Kane, S.M. Girvin, M.P.A. Fisher, Phys. Rev. Lett. 71, 4381 (1993)

    Article  ADS  Google Scholar 

  18. K. Leung, R. Egger, C.H. Mak, Phys. Rev. Lett. 75, 3344 (1995)

    Article  ADS  Google Scholar 

  19. P. Fendley, A.W.W. Ludwig, H. Saleur, Phys. Rev. B 52, 8934 (1995)

    Article  ADS  Google Scholar 

  20. A. Anthore, Z. Iftikhar, E. Boulat, F.D. Parmentier, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Phys. Rev. X 8, 031075 (2018)

    Google Scholar 

  21. E. Boulat, https://arXiv:1912.03872

  22. S. Eggert, I. Affleck, Phys. Rev. B 46, 10866 (1992)

    Article  ADS  Google Scholar 

  23. D. Yue, L.I. Glazman, K.A. Matveev, Phys. Rev. B 49, 1966 (1994)

    Article  ADS  Google Scholar 

  24. V. Meden, S. Andergassen, T. Enss, H. Schoeller, K. Schönhammer, New J. Phys. 10, 045012 (2008)

    Article  ADS  Google Scholar 

  25. S. Sachdev,Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

  26. H.T. Mebrahtu, I.V. Borzenets, D.E. Liu, H. Zheng, Y.V. Bomze, A.I. Smirnov, H.U. Baranger, G. Finkelstein, Nature 488, 61 (2012)

    Article  ADS  Google Scholar 

  27. S. Ghoshal, A. Zamolodchikov, Int. J. Mod. Phys. A 09, 3841 (1994)

    Article  ADS  Google Scholar 

  28. P. Fendley, H. Saleur, Nucl. Phys. B 428, 681 (1994)

    Article  ADS  Google Scholar 

  29. P. Fendley, H. Saleur, N. Warner, Nucl. Phys. B 430, 577 (1994)

    Article  ADS  Google Scholar 

  30. A.B. Zamolodchikov, A.B. Zamolodchikov, Ann. Phys. 120, 253 (1979)

    Article  ADS  Google Scholar 

  31. L.D. Faddeev, Sov. Sci. Rev. C 1, 107 (1980)

    Google Scholar 

  32. A.B. Zamolodchikov, Nucl. Phys. B 342, 695 (1990)

  33. A. Zamolodchikov, Phys. Lett. B 253, 391 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Takahashi, M. Susuki, Prog. Theor. Phys. 48, 2187 (1972)

    Article  ADS  Google Scholar 

  35. M. Takahashi,Thermodynamics of one-dimensional solvable models (Cambridge University Press, Cambridge, 2005)

  36. V. E. Korepin, G. Izergin, N.M. Bogoliubov,Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993)

  37. L.D. Faddeev, inSymétries Quantiques/Quantum Symmetries: Les Houches, Session LXIV, edited by A. Connes, K. Gawedzki, J. Zinn-Justin (North-Holland Publishing, Amsterdam, 1998)

  38. M. Fowler, X. Zotos, Phys. Rev B 25, 5806 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Chung, Y.C. Chang, Phys. Rev. Lett. 50, 791 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  40. P. Fendley, K. Intriligator, Nucl. Phys. B 372, 533 (1992)

    Article  ADS  Google Scholar 

  41. R. Tateo, Int. J. Mod. Phys. A 10, 1357 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Janzen, V. Meden, K. Schönhammer, Phys. Rev. B 74, 085301 (2006)

    Article  ADS  Google Scholar 

  43. I. Safi, H.J. Schulz, Phys. Rev. B 52, R17040 (1995)

    Article  ADS  Google Scholar 

  44. D.L. Maslov, M. Stone, Phys. Rev. B 52, R5539 (1995)

    Article  ADS  Google Scholar 

  45. V. Meden, P. Schmitteckert, N. Shannon, Phys. Rev. B 57, 8878 (1998)

    Article  ADS  Google Scholar 

  46. W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, K. Schöhammer, Rev. Mod. Phys. 84, 299 (2012)

    Article  ADS  Google Scholar 

  47. V. Meden, T. Enss, S. Andergassen, W. Metzner, K. Schönhammer, Phys. Rev. B 71, 041302 (2004)

    Article  ADS  Google Scholar 

  48. T. Enss, V. Meden, S. Andergassen, X. Barnabé-Thériault, W. Metzner, K. Schönhammer, Phys. Rev. B 71, 155401 (2005)

    Article  ADS  Google Scholar 

  49. S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, Phys. Rev. B 73, 045125 (2006)

    Article  ADS  Google Scholar 

  50. V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, J. Low Temp. Phys. 126, 1147 (2002)

    Article  ADS  Google Scholar 

  51. V. Meden, S. Andergassen, W. Metzner, U. Schollwöck, K. Schönhammer, Europhys. Lett. 64, 769 (2003)

    Article  ADS  Google Scholar 

  52. H. Grabert, M.H. Devoret (eds.), Single charge tunneling (Plenum Press, New York, 1992)

  53. F.D. Parmentier, A. Anthore, S. Jezouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Nat. Phys. 7, 935 (2011)

    Article  Google Scholar 

  54. S. Jezouin, M. Albert, F. D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, I. Safi, F. Pierre, Nat. Commun. 4, 1802 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Authors and Affiliations

  1. Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ Paris Sud, Université Paris-Saclay, 91120, Palaiseau, France

    Anne Anthore & Frédéric Pierre

  2. Université de Paris, Univ Paris Diderot, 75013, Paris, France

    Anne Anthore

  3. Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056, Aachen, Germany

    Dante M. Kennes & Volker Meden

  4. Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), Univ Paris Diderot, CNRS, 75013, Paris, France

    Edouard Boulat

  5. Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, 72076, Tübingen, Germany

    Sabine Andergassen

Authors
  1. Anne Anthore
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Dante M. Kennes
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Edouard Boulat
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Sabine Andergassen
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Frédéric Pierre
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Volker Meden
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Volker Meden.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthore, A., Kennes, D.M., Boulat, E. et al. Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits. Eur. Phys. J. Spec. Top. 229, 663–682 (2020). https://doi.org/10.1140/epjst/e2019-900117-5

Download citation

  • Received: 18 June 2019

  • Revised: 12 August 2019

  • Published: 14 February 2020

  • Issue Date: February 2020

  • DOI: https://doi.org/10.1140/epjst/e2019-900117-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

New Directions in the Physics of One-dimensional Electron Systems

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.