Skip to main content

Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits

Abstract

We review the intriguing many-body physics resulting out of the interplay of a single, local impurity and the two-particle interaction in a one-dimensional Fermi system. Even if the underlying homogeneous correlated system is taken to be metallic, this interplay leads to an emergent quantum phase transition between metallic and insulating states. We show that the zero temperature critical point and the universal low-energy physics associated to it, is realized in two different models, the field theoretical local sine-Gordon model and spinless fermions on a lattice with nearest-neighbor hopping and two-particle interaction, as well as in an experimental setup consisting of a highly tunable quantum circuit. Despite the different high-energy physics of the three systems the universal low-energy scaling curves of the conductance as a function of temperature agree up to a very high precision without any free parameter. Overall this provides a convincing example of how emergent universality in complex systems originating from a common underlying quantum critical point establishes a bridge between different fields of physics. In our case between field theory, quantum many-body theory of correlated Fermi systems, and experimental circuit quantum electrodynamics.

References

  1. A.L. Fetter, J.D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

  2. A. Luther, I Peschel, Phys. Rev. B 9, 2911 (1974)

    ADS  Article  Google Scholar 

  3. D.C. Mattis, J. Math. Phys. 15, 609 (1974)

    ADS  Article  Google Scholar 

  4. J. Sólyom, Adv. Phys. 28, 201 (1979)

    ADS  Article  Google Scholar 

  5. T. Giamarchi,Quantum Physics in One Dimension (Oxford University Press, New York, 2003)

  6. J. von Delft, H. Schoeller, Ann. Phys. 7, 225 (1998)

    MathSciNet  Article  Google Scholar 

  7. K. Schönhammer inInteracting Electrons in Low Dimensions, edited by D. Baeriswyl (Kluwer Academic Publishers, Dordrecht, 2005)

  8. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  9. M. Grioni, S. Pons, E. Frantzeskakis, J. Phys.: Condens. Matter 21, 023201 (2009)

    ADS  Google Scholar 

  10. V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464, 209 (2010)

    ADS  Article  Google Scholar 

  11. T. Giamarchi, Int. J. Mod. Phys. B 26, 1244004 (2012)

    ADS  Article  Google Scholar 

  12. I. Safi, H. Saleur, Phys. Rev. Lett. 93, 126602 (2004)

    ADS  Article  Google Scholar 

  13. W. Apel, T.M. Rice, Phys. Rev. B 26, 7063 (1982)

    ADS  Article  Google Scholar 

  14. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992)

    ADS  Article  Google Scholar 

  15. S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982)

    ADS  Article  Google Scholar 

  16. A. Schmid, Phys. Rev. Lett. 51, (1983) 1506

    ADS  Article  Google Scholar 

  17. K. Moon, H. Yi, C.L. Kane, S.M. Girvin, M.P.A. Fisher, Phys. Rev. Lett. 71, 4381 (1993)

    ADS  Article  Google Scholar 

  18. K. Leung, R. Egger, C.H. Mak, Phys. Rev. Lett. 75, 3344 (1995)

    ADS  Article  Google Scholar 

  19. P. Fendley, A.W.W. Ludwig, H. Saleur, Phys. Rev. B 52, 8934 (1995)

    ADS  Article  Google Scholar 

  20. A. Anthore, Z. Iftikhar, E. Boulat, F.D. Parmentier, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Phys. Rev. X 8, 031075 (2018)

    Google Scholar 

  21. E. Boulat, https://arXiv:1912.03872

  22. S. Eggert, I. Affleck, Phys. Rev. B 46, 10866 (1992)

    ADS  Article  Google Scholar 

  23. D. Yue, L.I. Glazman, K.A. Matveev, Phys. Rev. B 49, 1966 (1994)

    ADS  Article  Google Scholar 

  24. V. Meden, S. Andergassen, T. Enss, H. Schoeller, K. Schönhammer, New J. Phys. 10, 045012 (2008)

    ADS  Article  Google Scholar 

  25. S. Sachdev,Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

  26. H.T. Mebrahtu, I.V. Borzenets, D.E. Liu, H. Zheng, Y.V. Bomze, A.I. Smirnov, H.U. Baranger, G. Finkelstein, Nature 488, 61 (2012)

    ADS  Article  Google Scholar 

  27. S. Ghoshal, A. Zamolodchikov, Int. J. Mod. Phys. A 09, 3841 (1994)

    ADS  Article  Google Scholar 

  28. P. Fendley, H. Saleur, Nucl. Phys. B 428, 681 (1994)

    ADS  Article  Google Scholar 

  29. P. Fendley, H. Saleur, N. Warner, Nucl. Phys. B 430, 577 (1994)

    ADS  Article  Google Scholar 

  30. A.B. Zamolodchikov, A.B. Zamolodchikov, Ann. Phys. 120, 253 (1979)

    ADS  Article  Google Scholar 

  31. L.D. Faddeev, Sov. Sci. Rev. C 1, 107 (1980)

    Google Scholar 

  32. A.B. Zamolodchikov, Nucl. Phys. B 342, 695 (1990)

  33. A. Zamolodchikov, Phys. Lett. B 253, 391 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  34. M. Takahashi, M. Susuki, Prog. Theor. Phys. 48, 2187 (1972)

    ADS  Article  Google Scholar 

  35. M. Takahashi,Thermodynamics of one-dimensional solvable models (Cambridge University Press, Cambridge, 2005)

  36. V. E. Korepin, G. Izergin, N.M. Bogoliubov,Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993)

  37. L.D. Faddeev, inSymétries Quantiques/Quantum Symmetries: Les Houches, Session LXIV, edited by A. Connes, K. Gawedzki, J. Zinn-Justin (North-Holland Publishing, Amsterdam, 1998)

  38. M. Fowler, X. Zotos, Phys. Rev B 25, 5806 (1982)

    ADS  MathSciNet  Article  Google Scholar 

  39. G. Chung, Y.C. Chang, Phys. Rev. Lett. 50, 791 (1983)

    ADS  MathSciNet  Article  Google Scholar 

  40. P. Fendley, K. Intriligator, Nucl. Phys. B 372, 533 (1992)

    ADS  Article  Google Scholar 

  41. R. Tateo, Int. J. Mod. Phys. A 10, 1357 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  42. K. Janzen, V. Meden, K. Schönhammer, Phys. Rev. B 74, 085301 (2006)

    ADS  Article  Google Scholar 

  43. I. Safi, H.J. Schulz, Phys. Rev. B 52, R17040 (1995)

    ADS  Article  Google Scholar 

  44. D.L. Maslov, M. Stone, Phys. Rev. B 52, R5539 (1995)

    ADS  Article  Google Scholar 

  45. V. Meden, P. Schmitteckert, N. Shannon, Phys. Rev. B 57, 8878 (1998)

    ADS  Article  Google Scholar 

  46. W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, K. Schöhammer, Rev. Mod. Phys. 84, 299 (2012)

    ADS  Article  Google Scholar 

  47. V. Meden, T. Enss, S. Andergassen, W. Metzner, K. Schönhammer, Phys. Rev. B 71, 041302 (2004)

    ADS  Article  Google Scholar 

  48. T. Enss, V. Meden, S. Andergassen, X. Barnabé-Thériault, W. Metzner, K. Schönhammer, Phys. Rev. B 71, 155401 (2005)

    ADS  Article  Google Scholar 

  49. S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, Phys. Rev. B 73, 045125 (2006)

    ADS  Article  Google Scholar 

  50. V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, J. Low Temp. Phys. 126, 1147 (2002)

    ADS  Article  Google Scholar 

  51. V. Meden, S. Andergassen, W. Metzner, U. Schollwöck, K. Schönhammer, Europhys. Lett. 64, 769 (2003)

    ADS  Article  Google Scholar 

  52. H. Grabert, M.H. Devoret (eds.), Single charge tunneling (Plenum Press, New York, 1992)

  53. F.D. Parmentier, A. Anthore, S. Jezouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Nat. Phys. 7, 935 (2011)

    Article  Google Scholar 

  54. S. Jezouin, M. Albert, F. D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, I. Safi, F. Pierre, Nat. Commun. 4, 1802 (2013)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Meden.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anthore, A., Kennes, D.M., Boulat, E. et al. Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits. Eur. Phys. J. Spec. Top. 229, 663–682 (2020). https://doi.org/10.1140/epjst/e2019-900117-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900117-5