Skip to main content

Advertisement

Log in

Stability of vacancy-free crystalline phases of titanium monoxide at high pressure and temperature

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

There has existed for a long time a paradigm that TiO phases at ambient conditions are stable only if structural vacancies are available. Using an evolutionary algorithm, we perform an ab initio search of possible zero-temperature polymorphs of TiO in wide pressure interval. We obtain the Gibbs energy of the competing phases taking into account entropy via quasiharmonic approximation and build the pressure–temperature diagram of the system. We reveal that two vacancy-free hexagonal phases are the most stable at relatively low temperatures in a wide range of pressures. The transition between these phases takes place at 28 GPa. Only above 1290 K at ambient pressure the phases with vacancies (B1-derived) become stable. In particular, the high-pressure hexagonal phase is shown to have unusual electronic properties, with a pronounced pseudo-gap in the electronic spectrum. The comparison of DFT–GGA and GW calculations demonstrates that the account for many-body corrections significantly changes the electronic spectrum near the Fermi energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yamaoka, K. Kobayashi, K. Sueoka, J. Vanhellemont, J. Cryst. Growth 474, 104 (2017)

    Article  ADS  Google Scholar 

  2. R.P. de Carvalho, C.R. Miranda, A.F. da Silva, J. Cryst. Growth 499, 13 (2018)

    Article  ADS  Google Scholar 

  3. E. Sedaghati, H.M.J. Boffin, R.J. MacDonald, S. Gandhi, N. Madhusudhan, N.P. Gibson, M. Oshagh, A. Claret, H. Rauer, Nature 549, 238 (2017)

    Article  ADS  Google Scholar 

  4. X. Jijian, W. Dong, Y. Heliang, B. Kejun, P. Jie, H. Jianqiao, X. Fangfang, H. Zhanglian, C. Xiaobo, H. Fuqiang, Adv. Mater. 30, 1706240 (2018)

    Article  Google Scholar 

  5. N. Dwivedi, R.J. Yeo, H.R. Tan, R. Stangl, A.G. Aberle, C.S. Bhatia, A. Danner, B. Liao, Adv. Funct. Mater. 28, 1707018 (2018)

    Article  Google Scholar 

  6. W.C. Peng, Y.C. Chen, J.L. He, S.L. Ou, R.H. Horng, D.S. Wuu, Sci. Rep. 8, 9255 (2018)

    Article  ADS  Google Scholar 

  7. C. Ou, J. Hou, T.R. Wei, B. Jiang, S. Jiao, J.F. Li, H. Zhu, NPG Asia Mater. 7, e182 (2015)

    Article  Google Scholar 

  8. M. Ramasamy, J. Lee, BioMed Res. Int. 2016, 1851242 (2016)

    Article  Google Scholar 

  9. N.K. Rajendran, S.S.D. Kumar, N.N. Houreld, H. Abrahamse, J. Drug Delivery Sci. Technol. 44, 421 (2018)

    Article  Google Scholar 

  10. I.S. Popov, A.N. Enyashin, A.A. Rempel, Superlattices Microstruct. 113, 459 (2018)

    Article  ADS  Google Scholar 

  11. S. Bartkowski, M. Neumann, E.Z. Kurmaev, V.V. Fedorenko, S.N. Shamin, V.M. Cherkashenko, S.N. Nemnonov, A. Winiarski, D.C. Rubie, Phys. Rev. B 56, 10656 (1997)

    Article  ADS  Google Scholar 

  12. A. Taylor, N.J. Doyle, High Temp. High Press. 1, 679 (1969)

    Google Scholar 

  13. M.G. Kostenko, A.A. Valeeva, A.A. Rempel, JETP Lett. 106, 354 (2017)

    Article  ADS  Google Scholar 

  14. N.M. Chtchelkatchev, R.E. Ryltsev, M.G. Kostenko, A.A. Rempel, JETP Lett. 108, 476 (2018)

    Article  ADS  Google Scholar 

  15. A.I. Gusev, A.A. Rempel, A.J. Magerl, Disorder and order in strongly nonstoichiometric compounds. Transition metal carbides, nitrides and oxides (Springer, Berlin, 2001)

    Chapter  Google Scholar 

  16. J.L. Murray, H.A. Wriedt, Bull. Alloy Phase Diagrams 8, 148 (1987)

    Article  Google Scholar 

  17. D. Watanabe, J.R. Castles, A. Jostsons, A.S. Marlin, Nature 210, 934 (1966)

    Article  ADS  Google Scholar 

  18. A.I. Gusev, J. Sol. State Chem. 199 (2013) 934.

    Article  Google Scholar 

  19. S. Amano, D. Bogdanovski, H. Yamane, M. Terauchi, R. Dronskowski, Angew. Chem. Int. Ed. 55, 1652 (2016)

    Article  Google Scholar 

  20. S. Möhr, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 620, 1175 (1994)

    Article  Google Scholar 

  21. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

    Article  ADS  Google Scholar 

  24. A.R. Oganov, C.W. Glass, J. Chem. Phys. 124, 244704 (2006)

    Article  ADS  Google Scholar 

  25. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184, 1172 (2013)

    Article  ADS  Google Scholar 

  26. A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44, 227 (2011)

    Article  Google Scholar 

  27. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Article  Google Scholar 

  28. A. Togo, L. Chaput, I. Tanaka, G. Hug, Phys. Rev. B 81, 174301 (2010)

    Article  ADS  Google Scholar 

  29. J. Graciani, A. Marquez, J.F. Sanz, Phys. Rev. B 72, 054117 (2005)

    Article  ADS  Google Scholar 

  30. D.A. Andersson, P.A. Korzhavyi, B. Johansson, Phys. Rev. B 71, 144101 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chtchelkatchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chtchelkatchev, N.M., Ryltsev, R.E., Magnitskaya, M.V. et al. Stability of vacancy-free crystalline phases of titanium monoxide at high pressure and temperature. Eur. Phys. J. Spec. Top. 229, 179–185 (2020). https://doi.org/10.1140/epjst/e2019-900113-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900113-5

Navigation