Skip to main content
Log in

Numerical simulation of selective laser melting with local powder shrinkage using FEM with the refined mesh

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A mathematical model of selective laser melting (SLM) of fine-grained metallic powders under the pulse laser annealing conditions has been developed. The processed powder bed is considered in the approximation of continuous medium where its effective thermophysical properties depend on local porosity. The model allows simulation of unsteady distributions of temperature, specific enthalpy, local porosity, morphology and thickness of the processed track. In the paper, all stages of problem analysis are described including its mathematical formulation and numerical implementation. To take into account shrinkage of the powder layer during sintering and remelting, the numerical model utilizes the arbitrary Lagrangian–Eulerian (ALE) method. Thus the finite element mesh provides robust control of quality and dynamic remeshing through adaptive mesh refinement. Using the proposed numerical model the unsteady thermal fields and local porosity of a Fe-based powder layer processed with a pulsed laser has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.V. Haranzhevskiy, D.A. Danilov, M.D. Krivilyov, P.K. Galenko, Mater. Sci. Eng. A 375–377, 502 (2004)

    Article  Google Scholar 

  2. S. Kumar, JOM 55, 43 (2003)

    Article  Google Scholar 

  3. I.V. Shishkovskiy, in Fundamentals of additive technologies of high resolution (SpB, Saint-Petersburg, 2016), p. 400

  4. E.V. Kharanzhevskiy, M.D. Krivilyov, Phys. Met. Metall. 111, 53 (2011)

    Article  Google Scholar 

  5. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Appl. Phys. Rev. 2, 41304 (2015)

    Article  Google Scholar 

  6. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal, Mater. Sci. Eng. R 54, 121 (2006)

    Article  Google Scholar 

  7. D.M. Herlach, Mater. Sci. Eng. R 12, 177 (1994)

    Article  Google Scholar 

  8. C. Meier, R.W. Penny, Y. Zou, J.S. Gibbs, A.J. Hart, Annu. Rev. Heat Transfer 20 (2017).

  9. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev. 2, 41101 (2015)

    Article  Google Scholar 

  10. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)

    Article  Google Scholar 

  11. A.G. Knyazeva, S.A. Shanin, Acta Mech. 227, 75 (2016)

    Article  MathSciNet  Google Scholar 

  12. Q. Chen, G. Guillemot, C.A. Gandin, M. Bellet, Addit. Manuf. 21, 713 (2018)

    Article  Google Scholar 

  13. J.D. Williams, C.R. Deckard, Rapid Prototyp. J. 4, 90 (1998)

    Article  Google Scholar 

  14. N.E. Hodge, R.M. Ferencz, J.M. Solberg, Comput. Mech. 54, 33 (2014)

    Article  MathSciNet  Google Scholar 

  15. M. Jamshidinia, F. Kong, R. Kovacevic, ASME District F-ECTC 1, 1 (2013)

    Google Scholar 

  16. T.S. Volchenko, A.P. Yalovets, Tech. Phys. 61, 324 (2016)

    Article  Google Scholar 

  17. M.D. Krivilev, D.D. Aflyatunova, V. Ankudinov, G.A. Gordeev, Materialovedenie (Mater. Sci.) 1, 2 (2012)

    Google Scholar 

  18. I.V. Shutov, G.A. Gordeev, E.V. Kharanzhevskiy, M.D. Krivilyov, I.O.P. Conf, Ser, Mater. Sci. Eng. 192, 12023 (2017)

    Google Scholar 

  19. V. Ankudinov, G.A. Gordeev, M.D. Krivilyov, I.O.P. Conf, Ser, Mater. Sci. Eng. 192, 12026 (2017)

    Google Scholar 

  20. M.D. Krivilyov, S.D. Mesarovic, D.P. Sekulic, J. Mater. Sci. 0022–2461, 1 (2016)

    Google Scholar 

  21. G.A. Gordeev, M.D. Krivilyov, V. Ankudinov, Comput. Continuum Mech. 10, 293 (2017)

    Article  Google Scholar 

  22. B.R. Bird, E.S. Warren, N.E. Lightfoot, in Transport Phenomena (John Wiley & Sons, 2007), p. 905

  23. I. Gibson, D. Rosen, B. Stuker, in Additive manufacturing technologies: 3D printing, rapid Prototyping, and direct digital manufacturing (2013), p. 10

  24. M.D. Krivilyov, G.A. Gordeev, V. Ankudinov, I.V. Shutov, E.V., Kharanzhevskiy, Additive technologies: now and future, in Proceedings of 4th International conference (VIAM, 2018), Vol. 1, pp. 1–15

  25. L.J. Segerlind, in Applied finite element analysis (Wiley, 1984), p. 448

  26. O. Zienkiewicz, R.L. Taylor, in Finite element method in engineering science (McGraw-Hill, 2000), p. 521

  27. J. Donea, A. Huerta, J.P. Ponthot, A. Rodríguez-Ferran, Fundamentals, in Encyclopedia of computational mechanics (John Wiley & Sons, 2004), Vol. 1, pp. 1–25

  28. COMSOL Multiphysics User Guide, COMSOL AB, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiy A. Gordeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeev, G.A., Ankudinov, V., Kharanzhevskiy, E.V. et al. Numerical simulation of selective laser melting with local powder shrinkage using FEM with the refined mesh. Eur. Phys. J. Spec. Top. 229, 205–216 (2020). https://doi.org/10.1140/epjst/e2019-900100-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900100-6

Navigation