Skip to main content
Log in

On convection-diffusion in non-Newtonian fluid flow in an annulus with wall oscillations

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Dispersion of a solute in a Casson fluid flow in an annulus is studied by considering the flow unsteadiness due to the pulsatile pressure gradient and wall oscillations. The expression for velocity is derived under the assumption of low Womersley frequency parameter and also yield plane locations are estimated. Generalized dispersion method is used to solve the convective diffusion equation and hence estimated the dispersion coefficient. With this approach mean concentration is able to express in terms of convection and dispersion coefficients. Effects of yield stress, unsteadiness of the flow, annular gap and wall oscillations on axial velocity, yield plane locations of the flow, dispersion coefficient and mean concentration are analysed. Due to combined action of wall oscillations and flow oscillations, the dispersion coefficient is observed to be changing cyclically and took both positive and negative values which differs from the case of no wall oscillations where the dispersion coefficient seen to be taking only positive values. Both qualitative and quantitative changes are seen in mean concentration in the case of wall movement when compared with the case of no wall oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Taylor, Proc. R. Soc. Lond. Ser. A 219, 186 (1953)

    Article  ADS  Google Scholar 

  2. R. Aris, Proc. R. Soc. Lond. Ser. A 235, 67 (1956)

    Article  ADS  Google Scholar 

  3. W.N. Gill, R. Sankarasubramanian, Proc. R. Soc. Lond. Ser. A 316, 341 (1970)

    Article  ADS  Google Scholar 

  4. N.G. Barton, J. Fluid Mech. 126, 205 (1983)

    Article  ADS  Google Scholar 

  5. R. Aris, Proc. R. Soc. Lond. Ser. A 259, 370 (1960)

    Article  ADS  Google Scholar 

  6. H.G. Harris Jr., S.L. Goren, Chem. Eng. Sci. 22, 1571 (1967)

    Article  Google Scholar 

  7. E.R. Holley, D.R. Harleman, H.B. Fischer, J. Hydraul. Div. ASCE 96, 1691 (1970)

    Google Scholar 

  8. P.C. Chatwin, J. Fluid Mech. 71, 513 (1975)

    Article  ADS  Google Scholar 

  9. J.R. Zierenberg, H. Fujioka, R.B Hirschl, R.H. Bartlett, J.B. Grotberg, J. Biomech. Eng. 129, 202 (2007)

    Article  Google Scholar 

  10. T.W. Secomb, J. Fluid Mech. 88, 273 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. P.E. Hydon, T.J. Pedley, J. Fluid Mech. 249, 535 (1993)

    Article  ADS  Google Scholar 

  12. S.L. Waters, J. Fluid Mech. 433, 193 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Broday, E. Kimmel, Int. J. Eng. Sci. 37, 836 (1999)

    Article  Google Scholar 

  14. S. Bandyopadhyay, B.S. Mazumder, Int. J. Eng. Sci. 37, 1407 (1999)

    Article  Google Scholar 

  15. C.O. Ng, Y.C. Bai, Acta Mech. 178, 65 (2005)

    Article  Google Scholar 

  16. S. Paul, B.S. Mazumder, Int. J. Eng. Sci. 46, 1203 (2008)

    Article  Google Scholar 

  17. S. Paul, Z. Angew. Math. Phys. 60, 899 (2009)

    Article  MathSciNet  Google Scholar 

  18. S. Paul, J. Appl. Math. Mech. 91, 23 (2011)

    Google Scholar 

  19. S. Ghoshal, Chem. Eng. Sci. 26, 185 (1971)

    Article  Google Scholar 

  20. S. Agrawal, G. Jayaraman, Appl. Math. Modell. 18, 504 (1994)

    Article  Google Scholar 

  21. K.M. Sharp, Ann. Biomed. Eng. 21, 407 (1993)

    Article  Google Scholar 

  22. S.B. Hazra, A.S. Gupta, P. Niyogi, Heat Mass Transfer 32, 481 (1997)

    Article  ADS  Google Scholar 

  23. R.K. Dash, G. Jayaraman, K.N. Mehta, Ann. Biomed. Eng. 28, 373 (2000)

    Article  Google Scholar 

  24. P. Nagarani, G. Sarojamma, G. Jayaraman, Ann. Biomed. Eng. 32, 706 (2004)

    Article  Google Scholar 

  25. P. Nagarani, G. Sarojamma, G. Jayaraman, Acta Mech. 187, 189 (2006)

    Article  Google Scholar 

  26. P. Nagarani, B.T. Sebastian, Acta Mech. 224, 571 (2013)

    Article  MathSciNet  Google Scholar 

  27. B.T. Sebastian, P. Nagarani, inInterdisciplinary Topics in Applied Mathematics, Modeling and Computational Science (Springer, Cham, 2015), pp. 389–395

  28. J. Rana, P.V.S.N. Murthy, J. Fluid Mech. 793, 877 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Rana, P.V.S.N. Murthy, Phys. Fluids 28, 11190 (2016)

    Google Scholar 

  30. J. Rana, P.V.S.N. Murthy, Proc. R. Soc. A 473, 20170427 (2017)

    Article  ADS  Google Scholar 

  31. B.T. Sebastian, P. Nagarani, Korea-Aust. Rheol. J. 30, 261 (2018)

    Article  Google Scholar 

  32. J. Aroesty, J.F. Gross, Microvasc. Res. 4, 1 (1972)

    Article  Google Scholar 

  33. R.K. Dash, G. Jayaraman, K.N. Mehta, J. Biomech. 29, 917 (1996)

    Article  Google Scholar 

  34. T.J. Pedley, R.D. Kamm, J. Fluid Mech. 193, 347 (1988)

    Article  ADS  Google Scholar 

  35. W.E. Boyce, R.C. Diprima,Elementary Differential Equations and Boundary Value Problems (John Wiley & Sons, New Jersey, 2004)

  36. C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed,The Mechanics of Circulation (Oxford University Press, New York, 1978)

  37. B.S. Mazumder, S.K. Das, J. Fluid Mech. 239, 523 (1992)

    Article  ADS  Google Scholar 

  38. R. Smith, J. Fluid Mech. 114, 379 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nagarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, B.T., Nagarani, P. On convection-diffusion in non-Newtonian fluid flow in an annulus with wall oscillations. Eur. Phys. J. Spec. Top. 228, 2729–2752 (2019). https://doi.org/10.1140/epjst/e2019-900071-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900071-7

Navigation