Skip to main content
Log in

Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The present work deals with the numerical study of two-dimensional incompressible, magnetohydrodynamic Falkner-Skan flow of Carreau nanofluid over wedge, plate and stagnation of the flat plate with convective boundary condition and chemical reaction. The influence of thermophoresis and Brownian motion are taken into account. Similarity transformations are utilized to transform the governing equations into a system of non-linear ordinary differential equations and solved numerically using Runge–Kutta Fehlberg scheme. A comparison has been made with the published results which reveals a good agreement. The influence of different physical parameters on flow, temperature and nanoparticle concentration distributions have been discussed in detail. A constitutional analysis has been made for skin friction coefficient, heat and mass transfer rates. Results elucidate that the influence of magnetic parameter on velocity is high over flat plate compared with wedge and stagnation point of the flat plate. Heat transfer performance is higher on shear thinning fluid compared with shear thickening fluid. Further, an increase in Brownian motion decreases the heat transfer rate but enhances the mass transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi, ASME FED 31/MD 66, 99 (1995)

    Google Scholar 

  2. U.H. Rizwan, S. Nadeem, Z.H. Khan, N.S. Akbar, Physica E 65, 17 (2015)

    Article  ADS  Google Scholar 

  3. A. Malvandi, F. Hedayati, D.D. Ganji, Alexandria Eng. J. 57, 2199 (2018)

    Article  Google Scholar 

  4. F. Mabood, N. Pochai, S. Shateyi, J. Eng. 2016, 5874864 (2016)

    Google Scholar 

  5. M. Sheikholeslami, D.D. Ganji, Physica A 417, 273 (2015)

    Article  ADS  Google Scholar 

  6. M.S. Kandelousi, Eur. Phy. J. Plus 129, 248 (2014)

    Article  Google Scholar 

  7. G. Kumaran, O.D. Makinde, R. Sivaraj, Defect Diffus. Forum 387, 653 (2018)

    Article  Google Scholar 

  8. R Sivaraj, I.L., Animasaun, A.S. Olabiyi, S. Saleem, N. Sandeep, Multidiscipline Model. Mater. Struct. 14, 695 (2018)

    Article  Google Scholar 

  9. G. Kumaran, N. Sandeep, J. Mol. Liq. 233, 262 (2017)

    Article  Google Scholar 

  10. W.A. Khan, Z.H. Khan, R.U. Haq, Eur. Phy. J. Plus, 130, 86 (2015)

    Article  Google Scholar 

  11. R. Sivaraj, B. Rushi Kumar, Int. J. Heat Mass Transfer 55, 3076 (2012)

    Article  Google Scholar 

  12. B. Rushi Kumar, R. Sivaraj, Int. J. Heat Mass Transfer 56, 370 (2013)

    Article  Google Scholar 

  13. M. Sheikholeslami, D.D. Ganji, Int. J. Num. Method Heat Fluid Flow 27, 1535 (2017)

    Article  Google Scholar 

  14. V.M. Falkner, S.W. Skan, Aeronautical Research Council, London, Rep. Mem. no 1314, 1930

  15. I. Ullah, S.S. Khan, K.L. Hsiao, Results Phys. 9, 183 (2018)

    Article  ADS  Google Scholar 

  16. C.S.K. Raju, N. Sandeep, Alexandria Eng. J. 55, 2045 (2016)

    Article  Google Scholar 

  17. H.T. Lin, L.-K. Lin, Int. J. Heat Mass Transfer 30, 1111 (1987)

    Article  ADS  Google Scholar 

  18. W.S. Yu, H.T. Lin, T. Yungg, Int. J. Heat Mass Transfer 34, 2491 (1991)

    Article  Google Scholar 

  19. W.T. Cheng, H.T. Lin, Int. J. Eng. Sci. 40, 231 (2002)

    Article  Google Scholar 

  20. M. Khan, M. Azam, A. Munir, J. Mol. Liq. 230, 48 (2017)

    Article  Google Scholar 

  21. R. Kandasamy, I. Muhaimin, A.B. Khamis, Heat Mass Transfer 45, 703 (2009)

    Article  ADS  Google Scholar 

  22. A.J. Chamkha, M. Mujtaba, A. Quadri, C. Issa, Heat Mass Transfer 39, 305 (2003)

    Article  ADS  Google Scholar 

  23. C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Alexandria Eng. J. 55, 1151 (2016)

    Article  Google Scholar 

  24. M. Khan, M. Azam, J. Mol. Liq. 225, 554 (2017)

    Article  Google Scholar 

  25. M. Waqas, M.I. Khan, T. Hayat, A. Alsaedi, Comput. Methods Appl. Mech. Eng. 324, 640 (2017)

    Article  ADS  Google Scholar 

  26. K. Sharada, B. Shankar, J. Nanofluids 6, 1143 (2017)

    Article  Google Scholar 

  27. M. Khan, M. Azam, A.S. Alshomrani, Results Phys. 7, 2261 (2017)

    Article  ADS  Google Scholar 

  28. M. Khan, Hashim, AIP Adv. 5, 107203 (2015)

    Article  Google Scholar 

  29. M. Khan, Hashim, M. Hussain, M. Azam, J. Magn. Magn. Mater. 412, 63 (2016)

    Article  ADS  Google Scholar 

  30. T. Hayata, S. Qayyuma, A. Alsaedi, A. Shafiqc, Results Phys. 10, 521 (2018)

    Article  ADS  Google Scholar 

  31. T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, Appl. Math. Comput. 246, 12 (2014)

    MathSciNet  Google Scholar 

  32. A. Chamkha, S. Abbasbandy, A.M. Rashad, Int. J. Num. Method Heat Fluid Flow 25, 422 (2015)

    Article  Google Scholar 

  33. R. Vemula, A.J. Chamkha, M.P. Mallesh, Int. J. Num. Meth. Heat Fluid Flow 26, 328 (2016)

    Article  Google Scholar 

  34. S.M. Atif, S. Hussain, M. Sagheer, Phys. Lett. A 383, 1187 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Sardar, L. Ahmad, M. Khan, A.S. Alshomrani, Int. J. Heat Mass Transfer 137, 809 (2019)

    Article  Google Scholar 

  36. J. Ahmed, M. Khan, L. Ahmad, J. Mol. Liq. 287, 110853 (2019)

    Article  Google Scholar 

  37. I. Haq, M. Shahzad, W.A. Khan, M. Irfan, S. Mustafa, M. Ali, F. Sultan, Case Stud. Therm. Eng. 14, 100432 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaran, G., Sivaraj, R., Subramanyam Reddy, A. et al. Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate. Eur. Phys. J. Spec. Top. 228, 2647–2659 (2019). https://doi.org/10.1140/epjst/e2019-900069-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900069-2

Navigation