Skip to main content
Log in

Entropy generation and nanofluid mixed convection in a C-shaped cavity with heat corner and inclined magnetic field

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A numerical simulation of entropy generation due to MHD mixed convective of water-copper nanofluid in a C-shaped cavity with a heated corner is performed. The cavity is subjected to an inclined uniform magnetic field, and the top wall of the cavity is adiabatic and moves with a constant velocity. The governing equations are formulated by employing the single-phase nanofluid approach and the resulting equations have been solved by the Finite Volume Method (FVM). Impacts of the pertinent parameters on the fluid flow and heat transfer inside the cavity have been presented graphically. The numerical data have been plotted in the portrait of streamlines, isotherms and the average Nusselt numbers. The effects of volume fraction, Hartmann number, and the aspect ratio on the entropy generation and mixed convection of the C-shaped cavity are investigated. It is found that for an aspect ratio = 0.1, increasing the nanofluid volume fraction causes an increment in the heat transfer. At low volume fractions and Hartmann numbers, the outcomes manifest a better thermal performance. Generally, the rate of entropy generation increases by increasing both the Hartmann number and the volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Abouali, G. Ahmadi, Appl. Therm. Eng. 36, 1 (2012)

    Article  Google Scholar 

  2. M. Mahmoodi, S.M. Hashemi, Int. J. Therm. Sci. 55, 76 (2012)

    Article  Google Scholar 

  3. N. Makulati, A. Kasaeipoor, M.M. Rashidi, Adv. Powder Technol. 27, 661 (2016)

    Article  Google Scholar 

  4. M.A. Mansour, M. Bakeir, A.J. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 24, 1954 (2013)

    Article  Google Scholar 

  5. M. Bayareh, A. Kianfar, A. Kasaeipoor, J. Heat Mass Transfer Res. 5, 129 (2018)

    Google Scholar 

  6. R. Mohebbi, M. Izadi, A.J. Chamkha, Phys. Fluids 29, 122009 (2017)

    Article  ADS  Google Scholar 

  7. T. Armaghani, H. Esmaeili, Y.A. Mohammadpoor, I. Pop, Heat Mass Transfer 54, 1791 (2018)

    Article  ADS  Google Scholar 

  8. A. Abedini, T. Armaghani, A.J. Chamkha, J. Therm. Anal. Calorim. 135, 685 (2019)

    Article  Google Scholar 

  9. A. Bejan, J. Heat Transfer 101, 18 (1979)

    Google Scholar 

  10. A. Bejan, Adv. Heat Transfer 15, 1 (1982)

    Article  ADS  Google Scholar 

  11. A. Bejan,Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes (CRC Press, Boca Raton, NY, 1996)

  12. M. Ismael, T. Armaghani, A. Chamkha, J. Taiwan Inst. Chem. Eng. 59, 138 (2016)

    Article  Google Scholar 

  13. A.J. Chamkha, M. Ismael, A. Kasaeipoor, T. Armaghani, Entropy 18, 50 (2016)

    Article  ADS  Google Scholar 

  14. T. Armaghani, A. Kasaeipoor, L. Momayez, M.M. Rashidi, Y.A. Mohammadpoor, Therm. Sci., https://doi.org/10.2298/TSCI171213112A

  15. S.M. Aminossadati, B. Ghasemi, Eur. J. Mech. B 28, 630 (2009)

    Article  Google Scholar 

  16. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  Google Scholar 

  17. E. Abu-Nada, A.J. Chamkha, Int. J. Therm. Sci. 49, 2339 (2010)

    Article  Google Scholar 

  18. J.A. Maxwell,Treatise on electricity and magnetism, 2nd edn. (Oxford University Press, Cambridge, UK, 1904)

  19. H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  20. S. Mahmud, R.A. Fraser, Int. J. Heat Mass Transfer 47, 3245 (2004)

    Article  Google Scholar 

  21. S.V. Patankar,Hemisphere (CRC Press, New York, 1980)

  22. K.M. Khanafer, A.J. Chamkha, Int. J. Heat Mass Transfer 31, 1354 (1999)

    Google Scholar 

  23. R. Iwatsu, J.M Hyun, K. Kuwahara, Int. J. Heat Mass Transfer 36, 1601 (1993)

    Article  Google Scholar 

  24. C.J. Ho, M.W. Chen, Z.W. Li, Int. J. Heat Mass Transfer 51, 4506 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Armaghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M.A., Armaghani, T., Chamkha, A.J. et al. Entropy generation and nanofluid mixed convection in a C-shaped cavity with heat corner and inclined magnetic field. Eur. Phys. J. Spec. Top. 228, 2619–2645 (2019). https://doi.org/10.1140/epjst/e2019-900050-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900050-3

Navigation