Skip to main content
Log in

Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Analytical solitary wave solution of the dust ion acoustic waves is studied due to the damped forced modified Korteweg-de Vries equation in an unmagnetized collisional dusty plasma consisting of negatively charged dust grain, positively charged ions, q-nonextensive electrons, and neutral particles in the presence of external periodic force. Using reductive perturbation technique, the damped forced modified Korteweg-de Vries equation is obtained for the dust ion acoustic waves. Momentum consevation law is used to obtain the dust ion acoustic solitary wave solutions in the framework of the damped forced modified Korteweg-de Vries equation. The effects of different physical parameters such as entropic index, dust ion collisional frequency, strength and frequency of the external periodic force, speed of the traveling wave and the parameter which is the ratio between the unperturbed densities of the dust ions and electrons are investigated on the analytical solution of the dust ion acoustic waves. It is observed that those parameters have significant effects on the structures of the damped forced dust ion acoustic solitary waves. The results of the present paper may have applications in laboratory and space plasma environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Verheest,Waves in Dusty Space Plasmas (Kluwer Academic, Dordrecht, 2000)

  2. P.K. Shukla, A.A. Mamun,Introduction to Dusty Plasma Physics (CRC Press, Boca Raton, US, 2002)

  3. A. Barkan, N. D’Angelo, R.L. Merlino, Planet. Space Sci. 44, 239 (1996)

    ADS  Google Scholar 

  4. S.K. El-Labany, E.F. El-Shamy, S.A. El-Warraki, Astrophys. Space Sci. 315, 287 (2008)

    ADS  Google Scholar 

  5. X. Wang, X. Bhattacharjee, S.K. Gou, J. Goree, Phys. Plasmas 8, 5018 (2001)

    ADS  Google Scholar 

  6. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space. Sci. 38, 543 (1990)

    ADS  Google Scholar 

  7. M. Horanyi, D.A. Mendis, J. Geophys. Res. 91, 355 (1986)

    ADS  Google Scholar 

  8. M. Horanyi, D.A. Mendis, Astrophys. J. 307, 800 (1986)

    ADS  Google Scholar 

  9. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    ADS  Google Scholar 

  10. T.G. Northrop, Phys. Scr. 75, 475 (1992)

    ADS  Google Scholar 

  11. D.A. Mendis, M. Rosenberg, IEEE Trans. Plasma Sci. 20, 929 (1992)

    ADS  Google Scholar 

  12. D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994)

    ADS  Google Scholar 

  13. F. Verheest, Space Sci. Rev. 77, 267 (1996)

    ADS  Google Scholar 

  14. J. Chu, J.B. Du, I. Lin, J. Phys. D Appl. Phys. 27, 296 (1994)

    ADS  Google Scholar 

  15. A. Bouchoute, A. Plain, L.P. Blondeau, C. Laure, J. Appl. Phys. 70, 1991 (1991)

    ADS  Google Scholar 

  16. H. Thomas, G.E. Morfill, V. Dammel, Phys. Rev. Lett. 73, 652 (1994)

    ADS  Google Scholar 

  17. I. Kourakis, P.K. Shukla, Eur. Phys. J. D 30, 97 (2004)

    ADS  Google Scholar 

  18. P.K. Shukla, M.Y. Yu, R. Bharuthram, J. Geophys. Res. 96, 21343 (1991)

    ADS  Google Scholar 

  19. P.K. Shukla, R.K. Varma, Phys. Fluids B 5, 236 (1993)

    ADS  Google Scholar 

  20. F. Melandso, Phys. Plasmas 3, 3890 (1996)

    ADS  Google Scholar 

  21. R.L. Merlino, A. Barkan, C. Thomson, N. D’Angelo, Phys. Plasmas 5, 1607 (1998)

    ADS  Google Scholar 

  22. M. Tribeche, T.H. Zerguini, Phys. Plasmas 11, 4115 (2004)

    ADS  Google Scholar 

  23. A.S. Bains, M. Tribeche, T.S. Gill, Phys. Plasmas 18, 022108 (2011)

    ADS  Google Scholar 

  24. H. Washimi, T. Tanaiuti, Phys. Rev. Lett. 17, 996 (1966)

    ADS  Google Scholar 

  25. E. Infeld, G. Rowlands,Nonlinear Waves, Soliton and Chaos (Cambridge University Press, Cambridge, 1990)

  26. A. Sen, S. Tiwary, S. Mishra, P. Kaw, Adv. Space Res. 56, 429 (2015)

    ADS  Google Scholar 

  27. R. Ali, A. Saha, P. Chatterjee, Phys. Plasmas 24, 122106 (2017)

    ADS  Google Scholar 

  28. S. Chowdhury, L.K. Mandi, P. Chatterjee, Phys. Plasmas 25, 042112 (2018)

    ADS  Google Scholar 

  29. P. Chatterjee, R. Ali, A. Saha, Z. Naturforsch. 73, 151 (2018)

    ADS  Google Scholar 

  30. M. Shilov, C. Cates, R. James, Phys. Plasmas 11, 2573 (2004)

    ADS  Google Scholar 

  31. S. Safeer, S. Mahmood, Q. Haque, Astrophys. J. 793, 36 (2014)

    ADS  Google Scholar 

  32. P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)

    ADS  Google Scholar 

  33. Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999)

    ADS  Google Scholar 

  34. M.G.M. Anowar, A.A. Mamun, Phys. Lett. A 3, 725896 (2008)

    ADS  Google Scholar 

  35. S.S. Duha, A.A. Mamun, Phys. Lett. A 373, 1287 (2009)

    ADS  Google Scholar 

  36. M.K. Ghorui, P. Chatterjee, C.S. Wong, Astrophys. Space Sci. 343, 639 (2013)

    ADS  Google Scholar 

  37. J. Tamang, K. Sarkar, A. Saha, Physica A 505, 18 (2018)

    ADS  MathSciNet  Google Scholar 

  38. A. Renyi, Acta Math. Hungar. 6, 285 (1955)

    Google Scholar 

  39. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  40. R. Amour, M. Tribeche, Phys. Plasmas 17, 063702 (2010)

    ADS  Google Scholar 

  41. A. Saha, P. Chatterjee, Astrophys. Space Sci. 353, 169 (2014)

    ADS  Google Scholar 

  42. A. Saha, P. Chatterjee, Astrophys. Space Sci. 351, 533 (2014)

    ADS  Google Scholar 

  43. H.R. Pakzad, Phys. Scr. 83, 105505 (2011)

    ADS  Google Scholar 

  44. L. Liyan, J.L. Du, Physics A 387, 4821 (2008)

    ADS  Google Scholar 

  45. A. Saha, Nonlinear Dyn. 87, 2193 (2016)

    Google Scholar 

  46. T.K. Das, A. Saha, N. Pal, P. Chatterjee, Phys. Plasmas 24, 037707 (2017)

    Google Scholar 

  47. A. Saha, P. Chatterjee, Braz. J. Phys. 45, 419 (2015)

    ADS  Google Scholar 

  48. V.S. Aslanov, V.V. Yudintsev, Adv. Space Res. 55, 660 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandi, L., Mondal, K.K. & Chatterjee, P. Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas. Eur. Phys. J. Spec. Top. 228, 2753–2768 (2019). https://doi.org/10.1140/epjst/e2019-900047-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900047-4

Navigation