Advertisement

Non-equilibrium dynamics: quantum systems and foundations of quantum mechanics

  • Václav ŠpičkaEmail author
  • Peter D. Keefe
  • Theo M. Nieuwenhuizen
Editorial
  • 173 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

This text presents a brief overview of the recent development of topics addressed by the original papers of this volume related to non-equilibrium phenomena in various (especially mesoscopic) systems and the foundations of quantum physics. A selection of relevant literature is included.

References

  1. 1.
    Th.M. Nieuwenhuizen, P.D. Keefe, V. Špička (Eds.), Proceedings of the International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT04), Physica E 29, 1 (2005) ADSGoogle Scholar
  2. 2.
    Th.M. Nieuwenhuizen, P.D. Keefe, V. Špička (Eds.), Proceedings of the International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT08), Physica E 42, 207 (2010) ADSGoogle Scholar
  3. 3.
    Th.M. Nieuwenhuizen, P.D. Keefe, V. Špička (Eds.), FQMT11: Topical Issue - International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics , Physica Scripta T151, 010301 (2012), 17, 83, 96, 158. ADSGoogle Scholar
  4. 4.
    Th.M. Nieuwenhuizen, P.D. Keefe, V. Špička (Eds.), FQMT13:Topical Issue - Interna- tional Conference on Frontiers of Quantum and Mesoscopic Thermodynamics, Physica Scripta T165, 010301 (2015) Google Scholar
  5. 5.
    P.D. Keefe, Th.M. Nieuwenhuizen, V. Špička (Eds.), Topical Issue - International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT15), Fortschritte der Physik (Progress of Physics) 65, 1720206 (2017) 1. Non-equilibrium statistical physics and quantum transport Google Scholar
  6. 6.
    R. Balian, in From Microphysics to Macrophysics (Springer-Verlag, Berlin, 1992), Vol. II Google Scholar
  7. 7.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn. (Springer, Berlin, 1985, 1997) Google Scholar
  8. 8.
    R. Dean Astumian, F. Moss (Eds.), The construction role of noise in fluctuation driven transport and stochastic resonance, Chaos 8, 3 (1998) zbMATHGoogle Scholar
  9. 9.
    T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, W. Zwerger, Quantum Transport and Dissipation (Wiley, 1998) Google Scholar
  10. 10.
    M. Grifoni, P. Hänggi, Driven Quantum Tunnelling, Phys. Rep. 304, 229 (1998) ADSMathSciNetGoogle Scholar
  11. 11.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic Resonance, Rev. Mod. Phys. 70, 223 (1998) ADSGoogle Scholar
  12. 12.
    C.W. Gardiner, P. Zoller, Quantum Noise, A Handbook of Markovian and Non-markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, Berlin, 2000) Google Scholar
  13. 13.
    Stochastic processes in physics, chemistry and biology, edited by J.A. Freund, T. Poschel (Springer, Berlin, 2000) Google Scholar
  14. 14.
    G. Lang, U. Weiss, Nonlinear quantum transport and current noise, Ann. Phys. (Leipzig) 9, 804 (2000) ADSGoogle Scholar
  15. 15.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001) Google Scholar
  16. 16.
    H.D. Zeh, The Physical Basis of the Direction of Time, 4th edn. (Springer, Berlin, 2001) Google Scholar
  17. 17.
    V. Pechakus, U. Weiss (Eds.), Quantum Dynamics of Open Systems, Chem. Phys. 268, 1 (2001) Google Scholar
  18. 18.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford, New York, 2002) Google Scholar
  19. 19.
    R.L. Liboff, Kinetic Theory, Classical, Quantum and Relativistic Descriptions, 3rd edn. (Prentice Hall, London, 1990, Springer, 2003) Google Scholar
  20. 20.
    H.J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 1999) Google Scholar
  21. 21.
    H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer, 2008) Google Scholar
  22. 22.
    H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn. (Springer, 2008) Google Scholar
  23. 23.
    G.E. Crooks, On the Jarzynski relation for dissipative quantum mechanics, J. Stat. Phys. 2008, P10023 (2008) Google Scholar
  24. 24.
    M. Griffoni, E. Paladino (Eds.), Focus on Quantum Dissipation in Unconventional Environments, New J. Phys. 10, 115003 (2008) ADSGoogle Scholar
  25. 25.
    U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, 2008) Google Scholar
  26. 26.
    Y.V. Nazarov, Y.M. Blanter, Quantum transport (Cambridge University Press, 2009) Google Scholar
  27. 27.
    F. Ritort, Fluctuations in open systems, Physics 2, 43 (2009) Google Scholar
  28. 28.
    M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009) ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    A.K. Paul, S. Adhikari, M. Baer, A treatise on the interaction of molecular systems with short-pulsed highly-intense external fields, Phys. Rep. 496, 79 (2010) ADSGoogle Scholar
  30. 30.
    J.C. Cuevas, E. Sheer, Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010) Google Scholar
  31. 31.
    C. Jarzynski, Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale, Annu. Rev. Con. Matt. Phys. 2, 329 (2011) Google Scholar
  32. 32.
    E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2011) Google Scholar
  33. 33.
    A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2011) Google Scholar
  34. 34.
    N.A. Zimbovskayaa, M.R. Pederson, Electron transport through molecular junctions, Phys. Rep. 509, 1 (2011) ADSGoogle Scholar
  35. 35.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011) ADSGoogle Scholar
  36. 36.
    R. Friedrich, J. Peinke, M. Sahimi, M. Reza Rahimi Tabar, Approaching complexity by stochastic methods: From biological systems to turbulence, Phys. Rep. 506, 87 (2011) ADSMathSciNetGoogle Scholar
  37. 37.
    C. Jarzynski, Single-molecule experiments: Out of equilibrium, Nat. Phys. 7, 591 (2011) Google Scholar
  38. 38.
    Y. Dubi, M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83, 131 (2011) ADSGoogle Scholar
  39. 39.
    S. Datta, Lessons from Nanoelectronics (World Scientific, Cambridge, Singapore, 2012) Google Scholar
  40. 40.
    H. Gea, M. Qian, H. Qian, Stochastic theory of nonequilibrium steady states. Part II:Applications in chemical biophysics, Phys. Rep. 510, 87 (2012) ADSGoogle Scholar
  41. 41.
    Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-, Weinheim, 2012) Google Scholar
  42. 42.
    R. Tindjong, I. Kaufman, D.G. Luchinsky, P.V. McClintock, I. Khovanov, R.S. Eisenberg, Non-equilibrium Stochastic Dynamics of Open Ion Channels, Nonlin.Phenom. Comp. Syst. 16, 146 (2013) Google Scholar
  43. 43.
    K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogenious Systems (Springer, Berlin, 2013) Google Scholar
  44. 44.
    G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013) Google Scholar
  45. 45.
    V. Špička, B. Velický, A. Kalvová, Electron systems out of equilibrium: Nonequilibrium Green’s functions approach, Int. J. Mod. Phys. B 28, 1430013 (2014) MathSciNetzbMATHGoogle Scholar
  46. 46.
    S. Denisov, S. Flach, P. Hänggi, Tunable transport with broken space-time symmetries, Phys. Rep. 538, 77 (2014) ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    E. Paladino, Y.M. Galperin, G. Falci, B.L. Altshuler, 1/f noise: Implications for solidstate quantum information, Rev. Mod. Phys. 86, 361 (2014) ADSGoogle Scholar
  48. 48.
    C. Di Castro, R. Raimondi, Statistical Mechanics and Applications in Condensed Matter (Cambridge University Press, 2015) Google Scholar
  49. 49.
    E. Dieterich, J. Camunas-Soler, M. Ribezzi-Crivellari, U. Seifert, F. Ritort, Single-molecule measurement of the effective temperature in non-equilibrium steady states, Nat. Phys. 11, 971 (2015) Google Scholar
  50. 50.
    A. Klopper, Topics in non-equilibrium physics, Nat. Phys. Insight 11, 103 (2015) Google Scholar
  51. 51.
    M. Bonitz, Quantum Kinetic Theory, 2nd edn. (Springer, 2016) Google Scholar
  52. 52.
    L. Wang, N. Li, P. Hänggi, Simulation of heat transport in low-dimensional oscillator systems, in Thermal transport in low dimensions: From statistical physics to nanoscale heat transfer, edited by S. Lepri (Springer-Verlag, Berlin, Heidelberg, New York), Lecture Notes in Physics 921, 239 (2016) Google Scholar
  53. 53.
    C. Verdozzi, A. Wacker, C.O. Almbladh, M. Bonitz (Eds.), Progress in Nonequilib- rium Green’s Functions VI, J. Phys.: Conf. Ser. 696, 011001 (2016) Google Scholar
  54. 54.
    H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88, 021002 (2016) ADSGoogle Scholar
  55. 55.
    D.K. Morr, Crossover from quantum to classical transport, Contemp. Phys. 57, 19 (2016) ADSGoogle Scholar
  56. 56.
    L.M. Sieberer, M. Buchhold, S. Diehl, Keldysh Field Theory for Driven Open Quantum Systems, Rep. Prog. Phys. 79, 096001 (2016) ADSGoogle Scholar
  57. 57.
    M. Bonitz, Quantum Kinetic Theory, 2nd edn. (Springer, 2017) Google Scholar
  58. 58.
    V. Špička, B. Velický, A. Kalvová, Non-equilibrium dynamics of open systemsand fluctuation-dissipation theorems, Fortschr. Phys. 65, 1700032 (2017) zbMATHGoogle Scholar
  59. 59.
    I. de Vega, D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017) ADSMathSciNetGoogle Scholar
  60. 60.
    A. Ghosh, Nanoelectronics: A Molecular View (World Scientific, 2017) Google Scholar
  61. 61.
    S. Rotter, S. Gigan, Light fields in complex media: Mesoscopic scattering meets wave control, Rev. Mod. Phys. 89, 015005 (2017) ADSGoogle Scholar
  62. 62.
    N.J. Morgenstern Horing, Quantum Statistical Field Theory: An Introduction to Schwinger’s Variational Method with Green’s Function Nanoapplications, Graphene and Superconductivity (Oxford University Press, 2017) Google Scholar
  63. 63.
    V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Antiferromagnetic spintronics, Rev. Mod. Phys. 90, 015005 (2018) ADSMathSciNetGoogle Scholar
  64. 64.
    T. Dornheim, S. Groth, M. Bonitz, The uniform electron gas at warm dense matter conditions, Phys. Rep. 744, 1 (2018) ADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    F. Sebastian Bergeret, M. de Lardizabal, M. Silaev, P. Virtanen, T.T. Heikkila, Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field, Rev. Mod. Phys. 90, 041001 (2018) 2. Quantum thermodynamics and molecular engines ADSGoogle Scholar
  66. 66.
    M.B. Plenio, V. Vedral, Teleportation, entanglement and thermodynamics in the quantum world, Contemp. Phys. 39, 431 (1998) ADSGoogle Scholar
  67. 67.
    F. Ritort, Work Fluctuations and Transient Violations of the Second Law: Perspectives in Theory and Experiments, Semin. Poincare 2, 63 (2003) Google Scholar
  68. 68.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics, Emergence of Thermodynamic Behavior within Composite Quantum Systems, Lecture Notes in Physics 657 (Springer, Berlin, 2004) Google Scholar
  69. 69.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Quantum thermodynamics: thermodynamics at the nanoscale, J. Mod. Opt. 51, 2703 (2004) ADSzbMATHGoogle Scholar
  70. 70.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Explanation of the Gibbs paradox within the framework of quantum thermodynamics, Phys. Rev. E 73, 066119 (2006) ADSMathSciNetzbMATHGoogle Scholar
  71. 71.
    M. Horodecki, Reversible path to thermodynamics, Nat. Phys. 4, 833 (2008) Google Scholar
  72. 72.
    F.G.S.L. Brandao, M.B. Plenio, Entanglement theory and the second law of thermodynamics, Nat. Phys. 4, 873 (2008) Google Scholar
  73. 73.
    P. Hänggi, F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81, 387 (2009) ADSGoogle Scholar
  74. 74.
    M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011) ADSGoogle Scholar
  75. 75.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems, and molecular machines, Rep. Prog. Phys. 75, 126001 (2012) ADSGoogle Scholar
  76. 76.
    D. Bercioux, R. Egger, P. Hänggi, M. Thorwart (Eds.), Focus on nonequilibrium fluctuation relations: from classical to quantum, New J. Phys. 17, 020201 (2015) ADSMathSciNetGoogle Scholar
  77. 77.
    B.P. Venkatesh, G. Watanabe, P. Talkner, Quantum fluctuation theorems and power measurements, New J. Phys. 17, 075018 (2015) Google Scholar
  78. 78.
    M. Campisi, J. Pekola, R. Fazio, Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments, New J. Phys. 17, 035012 (2015) ADSGoogle Scholar
  79. 79.
    J.P. Pekola, Towards quantum thermodynamics in electronic circuits, Nat. Phys. 11, 118 (2015) Google Scholar
  80. 80.
    G. Gour, M.P. Muller, V. Narasimhachar, R.W. Spekkens, N.Y. Halpern, The resource theory of informational nonequilibrium in thermodynamics, Phys. Rep. 583, 1 (2015) ADSMathSciNetzbMATHGoogle Scholar
  81. 81.
    J. Goold, M. Huber, A. Riera, L. dia del Rio, P. Skrzypczyk, The role of quantum information in thermodynamics? A topical review, J. Phys. A: Math. Theor. 49, 143001 (2016) ADSMathSciNetzbMATHGoogle Scholar
  82. 82.
    S. Vinjanampathy, J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 545 (2016) ADSGoogle Scholar
  83. 83.
    S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A.T. Rezakhani, Correlations in quantum thermodynamics: Heat, work, and entropy production, Sci. Rep. 6, 35568 (2016) ADSGoogle Scholar
  84. 84.
    G. Katz, R. Kosloff, Quantum thermodynamics in strong coupling: Heat transport and refrigeration, Entropy 18, 186 (2016) ADSGoogle Scholar
  85. 85.
    J. Anders, M. Esposito (Eds.), Focus on Quantum Thermodynamics, New J. Phys. 19, 010201 (2017) ADSGoogle Scholar
  86. 86.
    F. Berger, S. Klumpp, R. Lipowsky, Force-dependent unbinding rate of molecular motors from stationary optical trap data, https://doi.org/arXiv:1806.07865v1 [physics.bio-ph] (2018)
  87. 87.
    R. Alicki, R. Kosloff, Introduction to Quantum Thermodynamics: History and Prospects, https://doi.org/arXiv:1801.08314v2 [quant-ph] (2018)
  88. 88.
    S. Popescu, A. Belén Sainz, A.J. Short, A. Winter, Quantum reference frames and their applications to thermodynamics, Phil. Trans. R. Soc. A 376, 20180111 (2018) 3. Foundations of quantum physics ADSMathSciNetzbMATHGoogle Scholar
  89. 89.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, 1995) Google Scholar
  90. 90.
    B. d’Espagnat, Veiled Reality (Addison-Wesley, 1995) Google Scholar
  91. 91.
    D.M. Greenberger, A. Zeilinger (Eds.), Fundamental Problems in Quantum Theory (Proceedings of a conference held in honor of J.A. Wheeler), Ann. N.Y. Acad. Sci. 755, 1 (1955) MathSciNetGoogle Scholar
  92. 92.
    L. de la Pena, A.M. Cetto, The Quantum Dice – An Introduction to Stochastic Electrodynamics (Kluwer Academic Publishers, 1996) Google Scholar
  93. 93.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfirter, A. Zeilinger, Experimental Quantum Teleportation, Nature 390, 575 (1997) ADSzbMATHGoogle Scholar
  94. 94.
    C.J. Isham, Lectures on Quantum Theory, Mathematical and Structural Foundations (Imperial College Press, 1995, 1997) Google Scholar
  95. 95.
    L. Hardy, Spooky action at a distance in quantum mechanics, Cont. Phys. 39, 416 (1998) ADSGoogle Scholar
  96. 96.
    E.B. Karlsson, E. Brandes (Eds.), Modern Studies of Basic Quantum Concepts and Phenomena, Phys. Scr. 76, 4 (1998) Google Scholar
  97. 97.
    A. Zeilinger, Experiment and the Foundations of Quantum Physics, Rev. Mod. Phys. 71, S288 (1999) Google Scholar
  98. 98.
    A. Zeilinger, A foundational principle for quantum mechanics, Found. Phys. 29, 631 (1999) MathSciNetGoogle Scholar
  99. 99.
    B.G. Englert, M.O. Scully, H. Walter, Quantum erasure in double-slit interferometers with which-way detectors, Am. J. Phys. 67, 325 (1999) ADSGoogle Scholar
  100. 100.
    H.A. Bethe, Quantum Theory, Rev. Mod. Phys. 71, S1 (1999) ADSGoogle Scholar
  101. 101.
    J.T. Cushing, The interpretation of quantum mechanicsthrough 1935, Ann. Phys. (Leipzig) 9, 939 (2000) ADSzbMATHGoogle Scholar
  102. 102.
    J. Ellis, D. Amati (Eds.), Quantum Reflections (Cambridge University Press, 2000) Google Scholar
  103. 103.
    G. Auletta, Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical Historical Analysis of the Problems and of a Synthesis of the Results (World Scientific, 2000) Google Scholar
  104. 104.
    F. Laloe, Do we really understand quantum mechanics? Strange correlations, paradoxes and theorems, Am. J. Phys. 69, 655 (2001) ADSGoogle Scholar
  105. 105.
    K.A. Milton, The Casimir Effect, Physical Manifestation of Zero-Point Energy (World Scientific, 2001) Google Scholar
  106. 106.
    W.M. De Muynck, Foundations of Quantum Mechanics, An Empiricists Approach (Kluwer, Dordrecht, 2002) Google Scholar
  107. 107.
    D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu (Eds.), Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer, Berlin, 1996, 2003) Google Scholar
  108. 108.
    M. Schlosshauer, Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics, Rev. Mod. Phys. 76, 1267 (2004) ADSGoogle Scholar
  109. 109.
    A. Elitzur, S. Dolev, N. Kolenda (Eds.), Quo Vadis Quantum Mechanics? (Springer, Berlin, 2005) Google Scholar
  110. 110.
    G. Greenstein, A.G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett Publishers, Sudbury, 2006) Google Scholar
  111. 111.
    S. Popescu, A.J. Short, A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2, 754 (2006) Google Scholar
  112. 112.
    S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006) Google Scholar
  113. 113.
    M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007) Google Scholar
  114. 114.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008) ADSMathSciNetzbMATHGoogle Scholar
  115. 115.
    A.J. Leggett, Realism and the physical world, Rep. Prog. Phys. 71, 022001 (2008) ADSMathSciNetGoogle Scholar
  116. 116.
    G. Auletta, M. Fortunato, G. Parisi, Quantum Mechanics (Cambridge University Press, 2009) Google Scholar
  117. 117.
    P.C. Hohenberg, Colloquium: An introduction to consistent quantum theory, Rev. Mod. Phys. 82, 2835 (2010) ADSMathSciNetzbMATHGoogle Scholar
  118. 118.
    M. Aspelmeyer, Measured measurement, Nat. Phys. 5, 11 (2009) Google Scholar
  119. 119.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum Entanglement, Rev. Mod. Phys. 81, 865 (2009) ADSGoogle Scholar
  120. 120.
    G. Jaeger, Entanglement, Information, and the Interpretation of quantum mechanics (Springer, 2009) Google Scholar
  121. 121.
    Ch. Ross, Dynamics of entanglement, Nat. Phys. 4, 97 (2008) Google Scholar
  122. 122.
    L. Maccone, V. Giovannetti, Quantum metrology: Beauty and the noisy beast, Nat. Phys. 7, 376 (2011) Google Scholar
  123. 123.
    Y. Sergeev, Quantum turbulence: Energy dissipation in extreme cold, Nat. Phys. 7, 451 (2011) Google Scholar
  124. 124.
    J.T. Barreiro, Quantum physics: Environmental effects controlled, Nat. Phys. 7, 927 (2011) Google Scholar
  125. 125.
    P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys. 84, 1 (2012) ADSGoogle Scholar
  126. 126.
    K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, M. Arndt, Colloquium: Quantum interference of clustersand molecules, Rev. Mod. Phys. 84, 157 (2012) ADSGoogle Scholar
  127. 127.
    A.G. Kofman, S. Ashhab, F. Nori, Nonperturbative theory of weak pre- and post- selected measurements, Phys. Rep. 520, 43 (2012) ADSMathSciNetGoogle Scholar
  128. 128.
    J.I. Cirac, P. Zoller, Goals and opportunities in quantum simulation, Nat. Phys. 8, 264 (2012) Google Scholar
  129. 129.
    I. Bloch, J. Dalibard, S. Nascimbene, Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012) Google Scholar
  130. 130.
    A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen, Understanding quantum measurement from the solution of dynamical models, Phys. Rep. 525, 1 (2013) ADSMathSciNetzbMATHGoogle Scholar
  131. 131.
    Y.V. Nazarov, J. Danon, Advanced Quantum Mechanics: A Practical Guide (Cambridge University Press, 2013) Google Scholar
  132. 132.
    I. Georgescu (Ed.), Foundations of quantum mechanics, Nat. Phys. Insight 10, 253 (2014) Google Scholar
  133. 133.
    J. Dressel, M. Malik, F.M. Miatto, A.N. Jaordan, R.B. Boyd, Colloqium: Understanding quantum weak values: Basics and applications, Rev. Mod. Phys. 86, 307 (2014) ADSGoogle Scholar
  134. 134.
    L. de la Pena, A.M. Cetto, A. Valdes-Fernandez, The Emerging Quantum: The Physics Behind Quantum Mechanics (Springer, 2015) Google Scholar
  135. 135.
    G. Brennen, E. Giacobino, Ch. Simon (Eds.), Focus on Quantum Memory, New J. Phys. 17, 050201 (2015) ADSGoogle Scholar
  136. 136.
    G. ’t Hooft The Cellular Automaton Interpretation of Quantum Mechanics, in Fundamental Theories of Physics (Springer, 2016), Vol. 185 Google Scholar
  137. 137.
    F. Zurek, Particle physics and condensed matter: the saga continues, Phys. Scr. T168, 014003 (2016) Google Scholar
  138. 138.
    J. Cotler, F. Zurek, Entangled histories, Phys. Scr. T168, 014004 (2016) ADSGoogle Scholar
  139. 139.
    W.P. Bowen, G.J. Milburn, Quantum Optomechanics (Taylor and Francis Group, 2016) Google Scholar
  140. 140.
    A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen, A sub-ensemble theory of idealquantum measurement processes, Ann. Phys. 376, 324 (2017) ADSzbMATHGoogle Scholar
  141. 141.
    T. Norsen, Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory (Springer, 2017) Google Scholar
  142. 142.
    D.E. Bruschi, A. Xuereb, Mechano-optics: an optomechanical quantum simulator, New J. Phys. 20, 06500 (2018) Google Scholar
  143. 143.
    O. Di Stefano, A.F. Kockum, A. Ridolfo, S. Savasta, F. Nori, Photodetection prob- ability in quantum systems with arbitrarily strong light-matter interaction, Sci. Rep. 8, 17825 (2018) ADSGoogle Scholar
  144. 144.
    N. Gisin, F. Fröwis, From quantum foundations to applications and back, Phil. Trans. R. Soc. A 376, 20170326 (2018) ADSGoogle Scholar
  145. 145.
    W.G. Unruh, Locality and quantum mechanics, Phil. Trans. R. Soc. A 376, 20170320 (2018) ADSzbMATHGoogle Scholar
  146. 146.
    C. Agnesi, F. Vedovato, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D.G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, P. Villoresi, Exploring the boundaries of quantum mechanics: advances in satellite quantum communications, Phil. Trans. R. Soc. A 376, 20170461 (2018) ADSGoogle Scholar
  147. 147.
    W.H. Zurek, Quantum reversibility is relative, or does a quantum measurement reset initial conditions? Phil. Trans. R. Soc. A 376, 20170315 (2018) ADSMathSciNetzbMATHGoogle Scholar
  148. 148.
    G. Adesso, R. Lo Franco, V. Parigi (Eds.), Foundations of quantum mechanics and their impact on contemporary society, Phil. Trans. R. Soc. A 376, 2123 (2018) Google Scholar
  149. 149.
    A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S.J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M.F. Riedel, P.O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, F.K. Wilhelm, The quantum technologies roadmap: a European community view, New J. Phys. 20, 080201 (2018) 4. Disordered and quantum many body systems, superfluidity, and superconductivity Google Scholar
  150. 150.
    G.D. Mahan, Many Particle Physics (Plenum Press, New York, 1990) Google Scholar
  151. 151.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003) Google Scholar
  152. 152.
    H. Bruus, K. Flensberg, Many Body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2004) Google Scholar
  153. 153.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley-, Wenheim, 2004) Google Scholar
  154. 154.
    J.F. Annett, Superconductivity, Superfluidity and Condensates (Oxford University Press, Oxford, 2004) Google Scholar
  155. 155.
    Ch.J. Foot, Atomic Physics (Oxford University Press, Oxford, 2005) Google Scholar
  156. 156.
    A.J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2006) Google Scholar
  157. 157.
    A. Posazhennikova, Colloquium: Weakly interacting, dilute Bose gases in 2D, Rev. Mod. Phys. 78, 1111 (2006) ADSGoogle Scholar
  158. 158.
    I. Bloch, P. Zoller (Eds.), Focus on Cold Atoms in Optical Lattices, New J. Phys. 8 (2006), https://doi.org/iopscience.iop.org/article/10.1088/1367-2630/8/8/E02/meta
  159. 159.
    D.M. Greenberg, N. Erez, M.O. Scully, A.A. Svidzinsky, M.S. Zubairy, Planck, Photon Statistics, and Bose-Einstein Condensation, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2007), p. 275 Google Scholar
  160. 160.
    R. Blatt, D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008 (2008) ADSGoogle Scholar
  161. 161.
    J. Clarke, F.K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008) ADSGoogle Scholar
  162. 162.
    R. Hanson, D.D. Awschalom, Coherent manipulation of single spins in semiconductors, Nature 453, 1031 (2008) Google Scholar
  163. 163.
    I. Bloch, J. Dallibard, W. Zwerger, Many-body physics with ultracold atoms, Rev. Mod. Phys. 80, 885 (2008) ADSGoogle Scholar
  164. 164.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008) ADSGoogle Scholar
  165. 165.
    I. Bloch, Quantum coherence and entanglement with ultracold atoms in optical lattices, Nature 453, 1016 (2008) ADSGoogle Scholar
  166. 166.
    I. Bloch, Quantum gases in optical lattices, Science 319, 1202 (2008) ADSGoogle Scholar
  167. 167.
    S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys. 4, 878 (2008) Google Scholar
  168. 168.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, 2008) Google Scholar
  169. 169.
    A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martin, A. Lemaitre, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Vina, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature 457, 291 (2009) ADSGoogle Scholar
  170. 170.
    C.J. Griffin, T. Nikuni, E. Zaremba, Bose Condensed Gases at Finite Temperatures (Cambridge University Press, 2009) Google Scholar
  171. 171.
    K. Dieckmann, Quantum gases: An insulating mix, Nat. Phys. 7, 593 (2011) Google Scholar
  172. 172.
    L.N. Cooper, D. Feldman (Eds.), BCS: 50 years (World Scientific, 2011) Google Scholar
  173. 173.
    W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, Ch.I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, M. Trippenbach, Cold and trapped metastable noble gases, Rev. Mod. Phys. 84, 175 (2012) ADSGoogle Scholar
  174. 174.
    A. Imambekov, T.L. Schmidt, L.I. Glazman, One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm, Rev. Mod. Phys. 84, 1253 (2012) ADSGoogle Scholar
  175. 175.
    Z.-L. Xiang, S. Ashab, J.Q. You, F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85, 623 (2013) ADSGoogle Scholar
  176. 176.
    M. Inguscio, L. Fallani, Atomic Physics: Precise Measurements and Ultracold Matter (Oxford, 2013) Google Scholar
  177. 177.
    C. Mudry, Lecture notes on field theory in condensed matter physics (World Scientific, 2014) Google Scholar
  178. 178.
    F. Nori, R.W Simmonds, J. You (Eds.), Focus on Quantum Microwave Field Effects in Superconducting Circuits, New J. Phys. (2014), https://doi.org/iopscience.iop.org/journal/1367-2630/page/Focus%20on%20Quantum%20Microwave%20Field%20Effects%20in%20Superconducting%20Circuits
  179. 179.
    P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, Cambridge, 2015) Google Scholar
  180. 180.
    M. Brando, D. Belitz, F.M. Grosche, T.R. Kirkpatrick, Metallic quantum ferromagnets, Rev. Mod. Phys. 88, 025006 (2016) ADSGoogle Scholar
  181. 181.
    X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 041004 (2017) ADSMathSciNetGoogle Scholar
  182. 182.
    C. Gardiner, P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book I: Foundations of Quantum Optics (World Scientific, 2014) Google Scholar
  183. 183.
    C. Gardiner, P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices (World Scientific, 2015) Google Scholar
  184. 184.
    C. Gardiner, P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book III: Ultra-cold Atoms (World Scientific, 2017) Google Scholar
  185. 185.
    E.C. Marino, Quantum Field Theory Approach to Condensed Matter Physics (Cambridge University Press, 2017) Google Scholar
  186. 186.
    F. Fröwis, P. Sekatski, W. Dur, N. Gisin, N. Sangouard, Macroscopic quantum states: Measures, fragility, and implementations, Rev. Mod. Phys. 90, 025004 (2018) ADSMathSciNetGoogle Scholar
  187. 187.
    D.E. Chang, J.S. Douglas, A. González-Tudela, C.-L. Hung, H.J. Kimble, Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons, Rev. Mod. Phys. 90, 031002 (2018)5. Biophysics and chemical physics ADSMathSciNetGoogle Scholar
  188. 188.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, 3rd edn. (Garland Publishing, Inc., 1994) Google Scholar
  189. 189.
    M.P. Murphy, L.A.J. O’Neill (Eds.), What is life? The Next Fifty Years (Cambridge University Press, Cambridge, 1995) Google Scholar
  190. 190.
    T.F. Weiss, Cellular Biophysics, Vol. 1 Transport (MIT Press, Cambridge, Massachusets, 1996) Google Scholar
  191. 191.
    T.F. Weiss, Cellular Biophysics, Vol. 2 Electrical Properties (MIT Press, Cambridge, Massachusets, 1996) Google Scholar
  192. 192.
    J.J. Hopfield, Dynamics, Computation, and Neurobiology, in Critical Problems in Physics, edited by V.L. Fitch, D.R. Marlow, M.A.E. Dementi (Princeton University Press, 1997), p. 29 Google Scholar
  193. 193.
    A.S. Perelson, G. Weisbuch, Immunology for physicists, Rev. Mod. Phys. 69, 1219 (1997) ADSGoogle Scholar
  194. 194.
    B.D. Hames, N.M. Hooper, J.D. Houghton, Instant Notes in Biochemistry (Bios Scientific Publishers, 1997) Google Scholar
  195. 195.
    H. Frauenfelder, G. Hummer, R. Garcia (Eds.), Biological Physics (American Institute of Physics, 1999) Google Scholar
  196. 196.
    M. Daune, Molecular Biophysics (Oxford University Press, Oxford, 1999) Google Scholar
  197. 197.
    H. Frauenfelder, P.G. Wolynes, R.H. Austin, Biological Physics, in More in Heaven and Earth, A Celebration of Physics at the Millenium, edited by B. Bederson (Springer, 1999), p. 707 Google Scholar
  198. 198.
    J. McFadden, Quantum Evolution: Life in the Multiverse (Flamingo, London, 2000) Google Scholar
  199. 199.
    V. Sayakanit, L. Matson, H. Frauenfelder (Eds.), Biological Physics 2000 (World Scientific, Singapore, 2001) Google Scholar
  200. 200.
    S. Kauffman, Investigations (Oxford University Press, New York, 2000) Google Scholar
  201. 201.
    P. Nelson, Biological Physics (W.H. Freeman and Company, 2004) Google Scholar
  202. 202.
    D. Abbott, Quantum Aspects of Life (World Scientific, Singapore, 2007) Google Scholar
  203. 203.
    F. Ritort, Nonequilibrium fluctuations in small systems: From physics to biology, https://doi.org/cond-mat0705.0455 (2007)
  204. 204.
    F. Jülicher, J. Kas (Eds.), Focus on Physics of the Cytoskeleton, New J. Phys. 10, 1367 (2007) Google Scholar
  205. 205.
    H.J. Briegel, S. Popescu, Entanglement and intra-molecular cooling in biological systems? A quantum thermodynamic perspective, https://doi.org/arXiv:quant-phys/0806.4552 (2008)
  206. 206.
    M.B. Plenio, S.F. Huelga, Dephasing-assisted transport: quantum networks and biomolecules, New J. Phys. 10, 113019 (2008) ADSGoogle Scholar
  207. 207.
    H. Frauenfelder, Proteins, supercooled liquids, and glasses: A micro-review, Physica E 42, 662 (2010) ADSGoogle Scholar
  208. 208.
    A. Mossa, J.M. Huguet, F. Ritort, Investigating the thermodynamics of small biosystems with optical tweezers, Physica E 42, 666 (2010) ADSGoogle Scholar
  209. 209.
    K.D. Dorfman, DNA electrophoresis in microfabricated devices, Rev. Mod. Phys. 82, 2903 (2010) ADSGoogle Scholar
  210. 210.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyrad, Electron-induced damage of DNA and its components: Experiments and theoretical models, Phys. Rep. 508, 1 (2011) ADSGoogle Scholar
  211. 211.
    V.P. Zhdanov, Kinetic models of gene expression including non-coding RNAs, Phys. Rep. 500, 1 (2011) ADSGoogle Scholar
  212. 212.
    G.D. Scholes, Quantum biology: Coherence in photosynthesis, Nat. Phys. 7, 448 (2011) Google Scholar
  213. 213.
    R. Philips, J. Kondev, J. Theriot, H. Garcia, Physical Biology of the Cell, 2nd edn. (Garland Science, 2013) Google Scholar
  214. 214.
    N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology, Nat. Phys. 9, 10 (2013) Google Scholar
  215. 215.
    K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Photosynthetic reaction center as a quantum heat engine, PNAS 110, 2746 (2013) ADSGoogle Scholar
  216. 216.
    M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio (Eds.), Quantum Effects in Biology, 1st edn. (Cambridge University Press, 2014) Google Scholar
  217. 217.
    H.B. Bohidar, Fundamentals of Polymer Physics and Molecular Biophysics (Cambridge University Press, 2015) Google Scholar
  218. 218.
    B. Alberts, A.D. Johnson, J. Lewis, D. Morgan, H. Raff, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Publishing, Inc., 2015) Google Scholar
  219. 219.
    J.F. Allemand, P. Desbiolles (Eds.), Physics and biology: from molecules to life (Singapore, World Scientific, 2015) Google Scholar
  220. 220.
    K. Kroy, E. Frey, Focus on soft mesoscopics: physics for biology at a mesoscopic scale, New J. Phys. 17, 110203 (2015) ADSGoogle Scholar
  221. 221.
    E. Betzig, Nobel Lecture: Single molecule, cells, and super-resolution oprics, Rev. Mod. Phys. 87, 1153 (2015) ADSGoogle Scholar
  222. 222.
    P.R. ten Wolde Putting Bounds on Biochemical Noise, Physics 9, 16 (2016) Google Scholar
  223. 223.
    R. Cortini, M. Barbi, B.R. Caré, C. Lavelle, A. Lesne, J. Mozziconacci, J.-M. Victor, The physics of epigenetics, Rev. Mod. Phys. 88, 025002 (2016) ADSGoogle Scholar
  224. 224.
    Z. Zeravcic, V.N. Manoharan, M.P. Brenner, Colloquium: Toward living matter with colloidal particles, Rev. Mod. Phys. 89, 031001 (2017) ADSMathSciNetGoogle Scholar
  225. 225.
    S. Klumpp, A. Siryaporn, S. van Teeffelen (Eds.), Focus on Bacterial Mechanics, New J. Phys. (2018), https://doi.org/iopscience.iop.org/journal/1367-2630/page/Focus%20on%20Bacterial%20Mechanics
  226. 226.
    H. Miller, Z. Zhou, J. Shepherd, A.J.M. Wollman, M.C. Leake, Single-molecule techniques in biophysics: a review of the progress in methods and applications, Rep. Prog. Phys. 81, 024601 (2018) ADSMathSciNetGoogle Scholar
  227. 227.
    S.J. Jang, B. Mennucci, Delocalized excitons in natural light-harvesting complexes, Rev. Mod. Phys. 90, 035003 (2018) ADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Václav Špička
    • 1
    Email author
  • Peter D. Keefe
    • 2
  • Theo M. Nieuwenhuizen
    • 3
  1. 1.Institute of Physics, Czech Academy of SciencesPragueCzech Republic
  2. 2.College of Engineering and Science, University of Detroit MercyDetroitUSA
  3. 3.Institute for Theoretical Physics, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations