Skip to main content
Log in

Experimental and analytical periodic motions in a first-order nonlinear circuit system

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, the analytical solution of a first-order nonlinear circuit is obtained through the generalized harmonic method. The analytical solutions of periodic motions are firstly expressed by finite Fourier series. Both the stability and bifurcations of the nonlinear system with a sinusoidal power-supply are studied by the eigenvalues of the system matrix. In order to verify the analytical solution, the researchers compared the spectrums and waveforms obtained from the analytical model, the simulation model and the circuit. The comparison of the spectrum shows the generalized harmonic balance method can describe the amplitude and phase of the nonlinear circuit more precisely. The comparison of the waveform indicates the output waveform from the simulation model have a good agreement with the results obtained from the analytical model. In the real circuit system, little errors on the output voltage amplitude and response speed maybe due to the nonlinear elements in the circuit and intrinsic voltage attenuation of the chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frey, O. Norman, in Proceeding of IEEE International Symposium on Circuits and Systems, New Orleans, 1990 (IEEE, 1990)p. 926

  2. D. Zhou, W. Cai, W. Zhang, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 46, 8 (1999)

    Google Scholar 

  3. E. Gad, R. Khazaka, M. Nakhla, R. Griffith, in Proceeding of the IEEE MTT-S International Microwave Symposium, Boston, 1999 (IEEE, IEEE MTT-S Int. Microwave Symp. Dig., 2000), p. 83

  4. X. Li, B. Hu, X.T. Ling, X. Zeng, IEEE Trans. Circuits Syst. I: Fundam. 49, 5 (2002)

    Article  Google Scholar 

  5. W.Y. Gong, R.X. Gong, H. Li, Univ. J. Guangxi 33 (2008)

  6. M.A.Z. Raja, A. Mehmood, S.A. Niazi, S.M. Muslim, Neural Comput. Appl. 30, 6 (2018)

    Google Scholar 

  7. H. Khan, S.J. Liao, R.N. Mohapatra, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14, 7 (2009)

    Article  Google Scholar 

  8. W. Marszalek, Z. Trzaska, in Proceeding of IEEE International Midwest Symposium on Circuits and Systems (IEEE, MWSCAS 2014, 2014), p. 426

  9. F. Tajaddodianfar, M.R.H. Yazdi, H.N. Pishkenari, Microsyst. Technol. 23, 6 (2017)

    Article  Google Scholar 

  10. I. Pakar, M. Bayat, M. Bayat, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 230, 1 (2016)

    Google Scholar 

  11. A.C.J. Luo, Continuous dynamical systems (Higher Education Press, Beijing, 2012)

  12. A.C.J. Luo, J.Z. Huang, J. Vib. Control 18, 11 (2012)

    Article  Google Scholar 

  13. A.C.J. Luo, J.Z. Huang, Int. J. Bifurc. Chaos 22, 4 (2012)

    Article  Google Scholar 

  14. Y.Y. Xu, A.C.J. Luo, Z.B. Chen, Chaos Solitons Fractals 97 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ma, K., He, H. et al. Experimental and analytical periodic motions in a first-order nonlinear circuit system. Eur. Phys. J. Spec. Top. 228, 1767–1780 (2019). https://doi.org/10.1140/epjst/e2019-800244-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800244-5

Navigation