Skip to main content
Log in

Frequency-amplitude characteristics of periodic motions in a periodically forced van der Pol oscillator

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, nonlinear frequency-amplitude characteristics of periodic motions in a periodically forced van der Pol oscillator are studied systematically. The periodic motions of the van der Pol oscillator are determined by the semi-analytical method, and the corresponding stability and bifurcation analysis is completed through the eigenvalue analysis. From the finite Fourier series analysis, the nonlinear frequency-amplitude characteristics of periodic motions are analyzed. From the frequency-amplitude analysis, the limit cycle of the van der Pol oscillator can be obtained analytically as excitation amplitude approach to zero, rather than numerically. For the van der Pol oscillator, most of periodic motions in the van der pol oscillator are symmetric. However, an asymmetric period-1 motion in the van der Pol oscillator is discovered. Thus a bifurcation tree of period-1 motion to chaos can be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. van der Pol, Radio Rev. 1, 754 (1920)

    Google Scholar 

  2. W.M.H. Greaves, Proc. R. Soc. London A 103, 516 (1923)

    Article  ADS  Google Scholar 

  3. B. van der Pol, J. van der Mark, Nature 120, 363 (1927)

    Article  ADS  Google Scholar 

  4. B. Van der Pol, Proc. Inst. Radio Eng. 22, 1051 (1934)

    Google Scholar 

  5. M.L. Cartwright, J.E. Littlewood, J. London Math. Soc. 20, 180 (1945)

    Article  MathSciNet  Google Scholar 

  6. M.L. Cartwright, J.E. Littlewood, Ann. Math. 1947, 472 (1947)

    Article  Google Scholar 

  7. J.E. Littlewood, Acta Math. 97, 267 (1957)

    Article  MathSciNet  Google Scholar 

  8. N. Levinson, Proc. Natl. Acad. Sci. USA 34, 13 (1948)

    Article  ADS  Google Scholar 

  9. N. Levinson, Ann. Math. Second Series 50, 127 (1949)

    Article  MathSciNet  Google Scholar 

  10. C.M. Andersen, SIAM J. Appl. Math. 42, 678 (1982)

    Article  MathSciNet  Google Scholar 

  11. M.B. Dadfar, J.F. Geer, C.M. Andersen, SIAM J. Appl. Math. 44, 881 (1984)

    Article  MathSciNet  Google Scholar 

  12. A. Buonomo, SIAM J. Appl. Math. 59, 156 (1998)

    Article  Google Scholar 

  13. A. Buonomo, Int. J. Circuit Theory Appl. 26, 39 (1998)

    Article  Google Scholar 

  14. R.E. Mickens, J. Sound Vib. 245, 757 (2001)

    Article  ADS  Google Scholar 

  15. R.E. Mickens, J. Sound Vib. 258, 199 (2002)

    Article  ADS  Google Scholar 

  16. S.B. Waluya, W.T. van Horssen, J. Sound Vib. 268, 209 (2003)

    Article  ADS  Google Scholar 

  17. I.V. Andrianov, W.T. van Horssen, J. Sound Vib. 295, 1099 (2006)

    Article  ADS  Google Scholar 

  18. J.O. Maaita, J. Appl. Nonlinear Dyn. 5, 193 (2016)

    Article  MathSciNet  Google Scholar 

  19. S.B. Yamgoué, B. Nana, F.B. Pelap, J. Appl. Nonlinear Dyn. 6, 17 (2017)

    Article  MathSciNet  Google Scholar 

  20. B. Shayak, P. Vyas, J. Appl. Nonlinear Dyn. 6, 57 (2017)

    Article  MathSciNet  Google Scholar 

  21. S. Rajamani, S. Rajasekar, J. Appl. Nonlinear Dyn. 6, 121 (2017)

    Article  MathSciNet  Google Scholar 

  22. A.C.J. Luo, Continuous Dynamical Systems (HEP/L&H Scientific, Beijing/Glen Carbon, 2012)

  23. A.C.J. Luo, J.Z. Huang, Int. J. Bifurc. Chaos 22, 1250093 (2012)

    Article  Google Scholar 

  24. A.C.J. Luo, J.Z. Huang, J. Appl. Nonlinear Dyn. 1, 73 (2012)

    Article  Google Scholar 

  25. A.C.J. Luo, A.B. Lakeh, Int. J. Dyn. Control 1, 99 (2013)

    Article  Google Scholar 

  26. A.C.J. Luo, A.B. Lakeh, Int. J. Dyn. Control 2, 474 (2014)

    Article  Google Scholar 

  27. A.C.J. Luo, Int. J. Bifurc. Chaos 25, 1550044 (2015)

    Article  Google Scholar 

  28. A.C.J. Luo, Discretization and Implicit Mapping Dynamics (HEP/Springer, Beijing/Berlin, Heidelberg, 2015)

  29. A.C.J. Luo, Y. Guo, Discontin. Nonlinearity Complex. 4, 121 (2015)

    Article  MathSciNet  Google Scholar 

  30. Y. Guo, A.C.J. Luo, Int. J. Dyn. Control 5, 551 (2016)

    Article  Google Scholar 

  31. A.C.J. Luo, S. Xing, Nonlinear Dyn. 85, 1141 (2016)

    Article  Google Scholar 

  32. A.C.J. Luo, S. Xing, Nonlinear Dyn. 88, 2831 (2017)

    Article  Google Scholar 

  33. Y. Xu, A.C.J. Luo, J. Vib. Test. Syst. Dyn. 2, 119 (2018)

    Google Scholar 

  34. Y. Xu, A.C.J. Luo, Int. J. Dyn. Control 7, 795 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Luo, A.C.J. Frequency-amplitude characteristics of periodic motions in a periodically forced van der Pol oscillator. Eur. Phys. J. Spec. Top. 228, 1839–1854 (2019). https://doi.org/10.1140/epjst/e2019-800241-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800241-y

Navigation