Skip to main content

Advertisement

Log in

Resonance capture and targeted energy transfer for suppressing aeroelastic instability of 2-D wing

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Numerical simulations were conducted to study flow-induced vibration of a two-dimensional airfoil with two nonlinear energy sinks (NES). The relationship between targeted energy transfer (TET) and vibration suppression is analyzed in detail. The main system has two degrees of freedom – the pitch and heave. The two NES are treated as subsystems, in which the first NES is place at the leading edge and the second NES is placed at the trailing edge. The limit cycle oscillation (LCO), which is to be suppressed by the NES, is studied from the viewpoint of the TET. The resonance capture (RC) in the coupled nonlinear system is also discussed by the means of the energy and spectrum analysis. This is followed by a detailed target energy transfer discussion of the heave and pitch modes and the NES. In addition, the empirical mode decomposition (EMD) is utilized to obtain an intrinsic mode function (IMF) to analyze resonance capture in the system. The results show that the NES can absorb vigorous amount of energy from one of the specified vibration modes. As the RC occurs, the TET between the vibration modes in the coupled system becomes more significant. In particular, the TET between the NES and the wing becomes more efficient. This results in an increase in the critical freestream velocity as the NES suppresses the nonlinear vibration of the main system in a very effective way. As the total energy exceeds the suppression range of the subsystem, the NES loses its effectiveness on vibration suppression effect on the main system. The IMF of the EMD exhibits special super-harmonic resonance and frequency competition characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.F. Sheta, V.J. Harrand, D.E. Thompson, T.W. Strganac, J. Aircr. 39, 133 (2002)

    Article  Google Scholar 

  2. S. Singh, M. Brenner, Nonlinear Dyn. 31, 435 (2003)

    Article  Google Scholar 

  3. C. Denegri, J. Aircr. 37, 761 (2000)

    Article  Google Scholar 

  4. R. Bunton, C. Denegri, J. Aircr. 37, 916 (2000)

    Article  Google Scholar 

  5. J. Croft, Aviation Week Space Technol. 155, 41 (2001)

    Google Scholar 

  6. G. Kerschen, Y.S. Lee, A.F. Vakakis, SIAM J. Appl. Math. 66, 648 (2006)

    Article  Google Scholar 

  7. M. Kurt, I. Slavkin, M. Eriten, D.M. McFarland, O.V. Gendelman, L.A. Bergman, A.F. Vakakis, Arch. Appl. Mech. 84, 1189 (2014)

    Article  ADS  Google Scholar 

  8. Y. Starosvetsky, O. Gendelman, J. Sound Vib. 329, 1836 (2010)

    Article  ADS  Google Scholar 

  9. D. Quinn, R. Rand, J. Bridge, Nonlinear Dyn. 8, 1 (1995)

    Article  Google Scholar 

  10. D. Quinn, Nonlinear Dyn. 14, 309 (1997)

    Article  Google Scholar 

  11. D. Quinn, Int. J. Non-Linear Mech. 32, 1193 (1997)

    Article  ADS  Google Scholar 

  12. S. Fatimah, F. Verhulst, Nonlinear Dyn. 31, 275 (2003)

    Article  Google Scholar 

  13. Y. Liu, K.L. Li, J.Z. Zhang, Commun. Nonlinear Sci. Numer. Simul. 17, 3427 (2012)

    Article  ADS  Google Scholar 

  14. O.V. Gendelman, D.V. Gorlov, L.I. Manevitch, A.I. Musienko, J. Sound Vib. 286, 1 (2005)

    Article  ADS  Google Scholar 

  15. Y.S. Lee, A.F. Vakakis, L.A. Bergman, D.M. McFarland, G. Kerschen, Triggering mechanisms of limit cycle oscillations in a two degree-of-freedom wing flutter model, in Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005, pp. 1863–1872

  16. Y.S. Lee, A.F. Vakakis, L.A. Bergman, D. Michael McFarland, Struct. Control Health Monit. 13, 41 (2005)

    Article  Google Scholar 

  17. Y.S. Lee, G. Kerschen, A.F. Vakakis, P. Panagopoulos, L. Bergman, D.M. McFarland, Physica D 204, 41 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Leonid, K. Agnessa, Phys. Rev. E 87, 304 (2012)

    Google Scholar 

  19. S.A. Hubbard, D.M. McFarland, L.A. Bergman, A.F. Vakakis, G. Andersen, AIAA J. 52, 2633 (2014)

    Article  ADS  Google Scholar 

  20. S.A. Hubbard, R.L. Fontenot, D.M. McFarland, P.G. Cizmas, L.A. Bergman, T.W. Strganac, A.F. Vakakis, J. Aircr. 51, 1467 (2014)

    Article  Google Scholar 

  21. Y. Lee, A. Vakakis, L. Bergman, D.M. McFarland, G. Kerschen, AIAA J. 45, 693 (2012)

    Article  ADS  Google Scholar 

  22. Y.C. Zhang, X.R. Kong, H.L. Zhang, J. Vib. Shock 31, 150 (2012)

    Google Scholar 

  23. Y.C. Zhang, X.R. Kong, Z.X. Yang, H.L. Zhang, J. Vib. Eng. 24, 111 (2011)

    Google Scholar 

  24. E.H. Dowell, J. Mech. Des. 103, 465 (1995)

    Google Scholar 

  25. Y.A. Kuznetsov, Elements of applied bifurcation theory (Springer-Verlag, New York, 1995)

  26. J.Z. Zhang, The stability, bifurcation theory and application of nonlinear dynamic system (Xi’an Jiaotong University Press, Xi’an, 2010)

  27. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, Proc. R. Soc. London Ser. A 454, 903 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Fang, J., He, Y. et al. Resonance capture and targeted energy transfer for suppressing aeroelastic instability of 2-D wing. Eur. Phys. J. Spec. Top. 228, 1873–1889 (2019). https://doi.org/10.1140/epjst/e2019-800227-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800227-1

Navigation