Skip to main content
Log in

A generalized mean-field theory for the t-J model: the single-pole COM solution

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We have reported the most general mean-field approximation for the t-J model obtained in the framework of the Composite Operator Method within the simplest one-pole approximation. The nearest-neighbor charge–charge and spin–spin correlators have been computed in a projection (one-loop) approximation with the result of reducing the self-consistent parameters just to two: the chemical potential and the kinetic energy. The properties of the system have been studied as functions of the filling and the temperature and compared with well established numerical results in order to assess the reliability of the obtained approximated solution. This latter is very well suited to study low-intermediate fillings and small dopings in case of frustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strongly Correlated Systems, Springer Series in Solid-State Sciences, edited by A. Avella, F. Mancini (Springer, Berlin, Heidelberg, 2012), Vol. 171

  2. Strongly Correlated Systems, Springer Series in Solid-State Sciences, edited by A. Avella, F. Mancini (Springer, Berlin, Heidelberg, 2013), Vol. 176

  3. Strongly Correlated Systems, Springer Series in Solid-State Sciences, edited by A. Avella, F. Mancini (Springer, Berlin, Heidelberg, 2015), Vol. 180

  4. D. Pines, Rep. Prog. Phys. 79, 092501 (2016)

    Article  ADS  Google Scholar 

  5. Y. Zhou, K. Kanoda, T.K. Ng, Rev. Mod. Phys. 89, 025003 (2017)

    Article  ADS  Google Scholar 

  6. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  7. G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.B. Eom, D.H.A. Blank, M.R. Beasley, Rev. Mod. Phys. 84, 253 (2012)

    Article  ADS  Google Scholar 

  8. J. Ngai, F. Walker, C. Ahn, Annu. Rev. Mater. Res. 44, 1 (2014)

    Article  ADS  Google Scholar 

  9. M. Lorenz, M.S.R. Rao, T. Venkatesan et al., J. Phys. D: Appl. Phys. 49, 433001 (2016)

    Article  Google Scholar 

  10. B. Dieny, M. Chshiev, Rev. Mod. Phys. 89, 025008 (2017)

    Article  ADS  Google Scholar 

  11. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  12. J. Hubbard, Proc. R. Soc. London, Ser. A 277, 237 (1964)

    Article  ADS  Google Scholar 

  13. J. Hubbard, Proc. R. Soc. London, Ser. A 281, 401 (1964)

    Article  ADS  Google Scholar 

  14. K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C. 10, L271 (1977)

    Article  Google Scholar 

  15. K.A. Chao, J. Spałek, A.M. Oleś, Phys. Rev. B 18, 3453 (1978)

    Article  ADS  Google Scholar 

  16. J. Spałek, Philos. Mag. 95, 661 (2015)

    Article  ADS  Google Scholar 

  17. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  18. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  19. W. Brzezicki, C. Noce, A. Romano, M. Cuoco, Phys. Rev. Lett. 114, 247002 (2015)

    Article  ADS  Google Scholar 

  20. C.D. Batista, S.Z. Lin, S. Hayami, Y. Kamiya, Rep. Prog. Phys. 79, 084504 (2016)

    Article  ADS  Google Scholar 

  21. C.W. Chen, J. Choe, E. Morosan, Rep. Prog. Phys. 79, 084505 (2016)

    Article  ADS  Google Scholar 

  22. A. Avella, Adv. Condens. Matter Phys. 2014, 515698 (2014)

    Article  Google Scholar 

  23. T. Kloss, X. Montiel, V.S. de Carvalho, H. Freire, C. Pépin, Rep. Prog. Phys. 79, 084507 (2016)

    Article  ADS  Google Scholar 

  24. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  25. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  26. M. Hashimoto, I.M. Vishik, R.H. He, T.P. Devereaux, Z.X. Shen, Nat. Phys. 10, 483 (2014)

    Article  Google Scholar 

  27. D. Chowdhury, S. Sachdev, in The Enigma of the Pseudogap Phase of the Cuprate Superconductors (World Scientific, 2015), pp. 1–43

  28. S. Tajima, Rep. Prog. Phys. 79, 094001 (2016)

    Article  ADS  Google Scholar 

  29. B. Ammon, M. Troyer, H. Tsunetsugu, Phys. Rev. B 52, 629 (1995)

    Article  ADS  Google Scholar 

  30. J. Spałek, Acta Phys. Pol. A 111, 409 (2007)

    Article  Google Scholar 

  31. L. Spanu, M. Lugas, F. Becca, S. Sorella, Phys. Rev. B 77, 024510 (2008)

    Article  ADS  Google Scholar 

  32. M. Ogata, H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008)

    Article  ADS  Google Scholar 

  33. K. Wohlfeld, M. Daghofer, A.M. Oleś, P. Horsch, Phys. Rev. B 78, 214423 (2008)

    Article  ADS  Google Scholar 

  34. S.R. White, D.J. Scalapino, Phys. Rev. B 79, 220504 (2009)

    Article  ADS  Google Scholar 

  35. S.A. Hamerla, S. Duffe, G.S. Uhrig, Phys. Rev. B 82, 235117 (2010)

    Article  ADS  Google Scholar 

  36. P. Corboz, S.R. White, G. Vidal, M. Troyer, Phys. Rev. B 84, 041108 (2011)

    Article  ADS  Google Scholar 

  37. B.S. Shastry, Phys. Rev. Lett. 107, 056403 (2011)

    Article  ADS  Google Scholar 

  38. A. Moreno, A. Muramatsu, S.R. Manmana, Phys. Rev. B 83, 205113 (2011)

    Article  ADS  Google Scholar 

  39. W.J. Hu, F. Becca, S. Sorella, Phys. Rev. B 85, 081110 (2012)

    Article  ADS  Google Scholar 

  40. D. Scalapino, S. White, Physica C 481, 146 (2012)

    Article  ADS  Google Scholar 

  41. J. Spałek, Acta Phys. Pol. A 121, 764 (2012)

    Article  Google Scholar 

  42. B.S. Shastry, Phys. Rev. B 87, 125124 (2013)

    Article  ADS  Google Scholar 

  43. J.R. Coulthard, S.R. Clark, D. Jaksch, Phys. Rev. B 98, 035116 (2018)

    Article  ADS  Google Scholar 

  44. P. Mai, S.R. White, B.S. Shastry, Phys. Rev. B 98, 035108 (2018)

    Article  ADS  Google Scholar 

  45. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11, 103 (2012)

    Article  ADS  Google Scholar 

  46. A. Romano, P. Gentile, C. Noce, I. Vekhter, M. Cuoco, Phys. Rev. Lett. 110, 267002 (2013)

    Article  ADS  Google Scholar 

  47. A. Bhattacharya, S.J. May, Annu. Rev. Mater. Res. 44, 65 (2014)

    Article  ADS  Google Scholar 

  48. A. Avella, A.M. Oleś, P. Horsch, Phys. Rev. Lett. 115, 206403 (2015)

    Article  ADS  Google Scholar 

  49. A. Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos, Nature 539, 509 (2016)

    Article  Google Scholar 

  50. A. Romano, C. Noce, I. Vekhter, M. Cuoco, Phys. Rev. B 96, 054512 (2017)

    Article  ADS  Google Scholar 

  51. A. Avella, A.M. Oleś, P. Horsch, Phys. Rev. B 97, 155104 (2018)

    Article  ADS  Google Scholar 

  52. M. Schiró, M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010)

    Article  ADS  Google Scholar 

  53. E.v. Oelsen, G. Seibold, J. Bünemann, Phys. Rev. Lett. 107, 076402 (2011)

    Article  ADS  Google Scholar 

  54. M. Schiró, Phys. Rev. B 86, 161101 (2012)

    Article  ADS  Google Scholar 

  55. N. Lanatà, H.U.R. Strand, Phys. Rev. B 86, 115310 (2012)

    Article  ADS  Google Scholar 

  56. F. Cilento, S. Dal Conte, G. Coslovich et al., Nat. Commun. 5, 4353 (2014)

    Article  ADS  Google Scholar 

  57. F. Novelli, G. De Filippis, V. Cataudella et al., Nat. Commun. 5, 5112 (2014)

    Article  ADS  Google Scholar 

  58. S. Dal Conte, L. Vidmar, D. Golez et al., Nat. Phys. 11, 421 (2015)

    Article  Google Scholar 

  59. J.H. Mentink, K. Balzer, M. Eckstein, Nat. Commun. 6, 6708 (2015)

    Article  ADS  Google Scholar 

  60. M. Gandolfi, G.L. Celardo, F. Borgonovi, G. Ferrini, A. Avella, F. Banfi, C. Giannetti, Phys. Scr. 92, 034004 (2017)

    Article  ADS  Google Scholar 

  61. F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004)

    Article  ADS  Google Scholar 

  62. A. Avella, F. Mancini, in Strongly Correlated Systems: Theoretical Methods, edited by A. Avella, F. Mancini, Vol. 171 of Springer Series in Solid-State Sciences (Springer, Berlin, Heidelberg, 2012), p. 103

  63. A. Avella, Eur. Phys. J. B 87, 45 (2014)

    Article  ADS  Google Scholar 

  64. A. Di Ciolo, A. Avella, Condens. Matter Phys. 21, 33701 (2018)

    Article  Google Scholar 

  65. Y.A. Tserkovnikov, Teor. Mat. Fiz. 49, 219 (1981)

    Article  MathSciNet  Google Scholar 

  66. Y.A. Tserkovnikov, Theor. Math. Phys. 52, 712 (1982)

    Article  Google Scholar 

  67. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    Article  ADS  Google Scholar 

  68. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  ADS  Google Scholar 

  69. L.M. Roth, Phys. Rev. 184, 451 (1969)

    Article  ADS  Google Scholar 

  70. W. Nolting, A.M. Oleś, J. Phys. C: Solid State Phys. 13, 2295 (1980)

    Article  ADS  Google Scholar 

  71. E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, J. Riera, Phys. Rev. B 45, 10741 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Avella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Ciolo, A., Noce, C. & Avella, A. A generalized mean-field theory for the t-J model: the single-pole COM solution. Eur. Phys. J. Spec. Top. 228, 659–668 (2019). https://doi.org/10.1140/epjst/e2019-800212-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800212-2

Navigation